(19)

(11) **EP 2 336 329 B1**

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 10.10.2012 Bulletin 2012/41 (51) Int Cl.: *C12N 15/13*^(2006.01)

A01K 67/027 (2006.01)

- (21) Application number: 11161775.9
- (22) Date of filing: 30.05.2008

(54) Compositions and methods for inhibiting endogenous immunoglobulin genes and producing transgenis human idiotype antibodies

Zusammensetzungen und Verfahren zur Hemmung engodener Immunglobulingene und zur Erzeugung transgener menschlicher idiotypischer Antikörper

Compositions et procédés pour inhiber des gênes d'immunoglobuline endogènes et produire des anticorps d'idiotype humain transgéniques

 (84) Designated Contracting States: AT BE BG CH CY CZ DE DK EE SFI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR (30) Priority: 01.06.2007 US 914619 P 11.04.2008 US 44324 P (31) Date of publication of application: 22.06.2011 Bulletin 2011/25 (32) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 08769934.4 / 2 152 880 (32) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) (34) Representative: Harrison Goddard Foote Beigrave Street Leeds LS2 8DD (GB) (35) References cited: (36) References cited: (37) Projection of application (s) in accordance with Art. 76 EPC: 08769934.4 / 2 152 880 (36) Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) (37) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) (37) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) (37) Representative: Harrison Goddard Foote Beigrave Street Leeds (37) Representative: Harrison Goddard Foote Beigrave Street (38) ST 105 (GB) (39) CGB) (30) CGB) (31) CFINGER NUCLEASES", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US LINKO- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 (31) SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 (32 ARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, XP002580717, ISSN: 0036-8075 			
 HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR (30) Priority: 01.06.2007 US 914619 P 11.04.2008 US 44324 P (31) Date of publication of application: 22.06.2011 Bulletin 2011/25 (43) Date of publication of application: 22.06.2011 Bulletin 2011/25 (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 08769934.4 / 2 152 880 (73) Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Hall LS2 8DD (GB) (75) GB) (74) Representative: Harrison Goddard Foote Belgrave Street Leeds LS2 8DD (GB) (75) GB) (76) GB) (77) Conting Content of the content of the	(84)		
 RO SE SI SK TR (30) Priority: 01.06.2007 US 914619 P 11.04.2008 US 44324 P (43) Date of publication of application: 22.06.2011 Bulletin 2011/25 (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 08769934.4 / 2 152 880 (73) Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Hall LS2 8DD (GB) (77) Representative: Harrison Goddard Foote Belgrave Hall LS2 8DD (GB) (74) Representative: Harrison Goddard Foote Belgrave Street Leeds (75) Street (76) CB) (77) Representative: Harrison Goddard Foote Belgrave Hall (77) CF LS 8DD (GB) (78) Propried: Complexibility (CA) 94303 (US) (79) Representative: Harrison Goddard Foote Belgrave Hall (70) CB) (70) CB) (71) Representative: Harrison Goddard Foote Belgrave Hall (72) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Street (75) Street (76) CB) (77) Representative: Harrison Goddard Foote Belgrave Street (72) Bolgrave Street (73) Propried: CGB) (74) Representative: Harrison Goddard Foote Belgrave Street (75) Street (76) CB) (77) Street (77) Street (78) Street (79) CBC (CD) Street (79) CBC (CD) Street (70) CBC (CD) Street (70) CBC (CD) Street (71) CD (CD) Street (72) CD (CD) Street (73) Street (74) Representative: Harrison Goddard Foote Belgrave Street (75) Street (76) CB) (77) CD (CD) CD (C		AT BE BG CH CY CZ DE DK EE ES FI FR GB GR	
 (30) Priority: 01.06.2007 US 914619 P 11.04.2008 US 44324 P (31) Date of publication of application: 22.06.2011 Bulletin 2011/25 (43) Date of publication of application: 22.06.2011 Bulletin 2011/25 (52) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 08769934.4 / 2 152 880 (73) Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) (75) GB) (76) UNE STREE (PARS), NATIONAL ACADEMY OF SCIENCE, US, vol. 88, no. 10, 15 May 1991 (1991-05-15), pages 4181-4185, XP000368701, ISN: 0027-8424, DOI: DOI:10.1073/PNAS. 88.10.4181 MENDEZ M J ET AL: "FUNCTIONAL TRANSPLANT OF MEGABASE HUMAN IMMUNOGLOBULIN LOCI RECAPITULATES HUMAN ANTIBODY RESPONSE IN MICE", NATURE GENETICS, NATURE PUBLISHING GROUP, NEW YORK, US, vol. 15, no. 2, 1 February 1997 (1997-02-01), pages 146-156, XP002067603, ISSN: 1061-4036, DOI: DOI:10.1038/NG297-146 PORTEUS M H ET AL: "GENE TARGETING USING ZINC FINGER NUCLEASES", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US LNKD- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 		HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT	CD4 ANTIBODY", PROCEEDINGS OF THE
 (30) Priority: 01.06.2007 US 914619 P 11.04.2008 US 44324 P (33) Date of publication of application: 22.06.2011 Bulletin 2011/25 (43) Date of publication of application: 22.06.2011 Bulletin 2011/25 (52) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 08769934.4 / 2 152 880 (73) Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds (75) CBB (CBB) (76) CBB (CBB) (77) Proprietor: Out, Inc. Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Street Leeds (75) CBB (CBB) (76) CBB (CBB) (77) Proprietor: CBB (CBB) (76) CBB (CBB) (77) Proprietor: CBB (CBB) (74) Representative: Harrison Goddard Foote Belgrave Street Leeds (75) CBB (CBB) (76) CBB (CBB) (77) CBB (CBB) (77) CBB (CBB) (74) Representative: Harrison Goddard Foote Belgrave Street Leeds (75) CBB (CBB) (76) CBB (CBB) (77) CBB (CBB) (78) CBB (CBB) (79) CBB (CBB) (70) CBB (CBB) (71) CBB (CBB) (72) CBB (CBB) (73) CBB (CBB) (74) REPRESENT (CBB (CBB) (75) CBB (CBB) (75) CBB (CBB) (76) CBB (CBB) (77) CBB (CBB) (78) CBB (CBB) (79) CBB (CBB) (71) CBB (CBB) (72) CBB (CBB) (73) CBB (CBB) (74) CBB (CBB) (75) CBB (CBB) (75) CBB (CBB) (75) CBB (CBB) (76) CBB (CBB) (77) CBB (CBB) (78) CBB (CBB) (78) CBB (CBB) (79) CBB (CBB) (79) CBB (CBB) (71) CBB (CBB) (72) CBB (CBB) (73) CBB (CBB) (74) CBB (CBB) (75) CBB (CBB) (75) CBB (CBB) (75) CBB (CBB)<td></td><td>RO SE SI SK TR</td><td>NATIONAL ACADEMY OF SCIENCES OF THE</td>		RO SE SI SK TR	NATIONAL ACADEMY OF SCIENCES OF THE
 11.04.2008 US 44324 P (1991-05-15), pages 4181-4185, XP000368701, ISSN: 0027-8424, DOI: DOI:10.1073/PNAS. 88.10.4181 (43) Date of publication of application: 22.06.2011 Bulletin 2011/25 (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 08769934.4 / 2 152 880 (73) Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) (72) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) (74) Representative: Harrison Goddard Foote Belgrave Street Leeds LS2 8DD (GB) (75) (76) (77) (78) (78) (78) (78) (78) (78) (78			UNITED STATES (PNAS), NATIONAL ACADEMY
 (43) Date of publication of application: 22.06.2011 Bulletin 2011/25 (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 08769934.4 / 2 152 880 (73) Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) (72) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) (75) CGB (76) REPRESENTION COMPARENTIAL STREET AND COMPARENT AND COMPA	(30)	Priority: 01.06.2007 US 914619 P	OF SCIENCE, US, vol. 88, no. 10, 15 May 1991
 (43) Date of publication of application: 22.06.2011 Bulletin 2011/25 (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 08769934.4 / 2 152 880 (73) Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) (72) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) (74) Representative: Harrison Goddard Foote Belgrave Street Leeds LS2 8DD (GB) (75) REPRESENTION (CR) SIN: 1061-4036, DOI: DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (205-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 (74) REPRESENTION (CR) SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 (207-01), pages 377-381, no. 5810, January 2007 (2007-01), pages 377-381, 		11.04.2008 US 44324 P	(1991-05-15), pages 4181-4185, XP000368701,
 22.06.2011 Bulletin 2011/25 MENDEZ M J ET AL: "FUNCTIONAL TRANSPLANT OF MEGABASE HUMAN IMMUNOGLOBULIN LOCI RECAPITULATES HUMAN ANTIBODY RESPONSE IN MICE", 08769934.4 / 2 152 880 Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) MENDEZ M J ET AL: "FUNCTIONAL TRANSPLANT OF MEGABASE HUMAN IMMUNOGLOBULIN LOCI RECAPITULATES HUMAN ANTIBODY RESPONSE IN MICE", NATURE QUENTICS, NATURE PUBLISHING GROUP, NEW YORK, US, vol. 15, no. 2, 1 February 1997 (1997-02-01), pages 146-156, XP002067603, ISSN: 1061-4036, DOI: DOI:10.1038/NG0297-146 PORTEUS M HET AL: "CENE TARGETING USING ZINC FINGER NUCLEASES", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US LNKD- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 			ISSN: 0027-8424, DOI: DOI:10.1073/PNAS.
 22.06.2011 Bulletin 2011/25 MENDEZ M J ET AL: "FUNCTIONAL TRANSPLANT OF MEGABASE HUMAN IMMUNOGLOBULIN LOCI RECAPITULATES HUMAN ANTIBODY RESPONSE IN MICE", 08769934.4 / 2 152 880 Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) MENDEZ M J ET AL: "FUNCTIONAL TRANSPLANT OF MEGABASE HUMAN IMMUNOGLOBULIN LOCI RECAPITULATES HUMAN ANTIBODY RESPONSE IN MICE", NATURE QUENTICS, NATURE PUBLISHING GROUP, NEW YORK, US, vol. 15, no. 2, 1 February 1997 (1997-02-01), pages 146-156, XP002067603, ISSN: 1061-4036, DOI: DOI:10.1038/NG0297-146 PORTEUS M HET AL: "CENE TARGETING USING ZINC FINGER NUCLEASES", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US LNKD- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 	(43)	Date of publication of application:	88.10.4181
 (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 08769934.4 / 2 152 880 (73) Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) (72) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) (74) GB (75) INVERTING GODI COLLET COLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US LNKD- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 (75) SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 (76) ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 	()		MENDEZ M J ET AL: "FUNCTIONAL
 (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 08769934.4 / 2 152 880 (73) Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) (72) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) (74) GB (75) INVERTING GODI COLLET COLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US LNKD- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 (75) SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 (76) ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 			TRANSPLANT OF MEGABASE HUMAN
 accordance with Art. 76 EPC: 08769934.4 / 2 152 880 Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) (72) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) HUMAN ANTIBODY RESPONSE IN MICE", NATURE GENETICS, NATURE PUBLISHING GROUP, NEW YORK, US, vol. 15, no. 2, 1 February 1997 (1997-02-01), pages 146-156, XP002067603, ISSN: 1061-4036, DOI: DOI:10.1038/NG0297-146 PORTEUS M H ET AL: "GENE TARGETING USING ZINC FINGER NUCLEASES", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US LNKO- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 	(62)	Document number(s) of the earlier application(s) in	
 08769934.4 / 2 152 880 NATURE GENETICS, NATURE PUBLISHING GROUP, NEW YORK, US, vol. 15, no. 2, 1 February 1997 (1997-02-01), pages 146-156, XP002067603, ISSN: 1061-4036, DOI: DOI:10.1038/NG0297-146 PORTEUS M H ET AL: "GENE TARGETING USING ZINC FINGER NUCLEASES", NATURE PUBLISHING GROUP, NEW YORK, NY, US LNKD- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 	()		HUMAN ANTIBODY RESPONSE IN MICE".
 (73) Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) (72) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) (75) GB) (76) GB) GROUP, NEW YORK, US, vol. 15, no. 2, 1 February 1997 (1997-02-01), pages 146-156, XP002067603, ISSN: 1061-4036, DOI: DOI:10.1038/NG0297-146 PORTEUS M H ET AL: "GENE TARGETING USING ZINC FINGER NUCLEASES", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US LNKD- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 			
 (73) Proprietor: Omt, Inc. Palo Alto, CA 94303 (US) (72) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) (75) (GB) (76) (GB) (77) (1997-02-01), pages 146-156, XP002067603, ISSN: 1061-4036, DOI: DOI:10.1038/NG0297-146 PORTEUS M H ET AL: "GENE TARGETING USING ZINC FINGER NUCLEASES", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US LNKD- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 			,
 Palo Alto, CA 94303 (US) ISSN: 1061-4036, DOI: DOI:10.1038/NG0297-146 PORTEUS M H ET AL: "GENE TARGETING USING ZINC FINGER NUCLEASES", NATURE BOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US LNKD- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 	(73)	Proprietor: Omt Inc	
 PORTEUS M H ET AL: "GENE TARGETING USING ZINC FINGER NUCLEASES", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US LNKD- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 	(10)	-	
 (72) Inventor: Buelow, Ronald Palo Alto, CA 94303 (US) (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) ZINC FINGER NUCLEASES", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US LNKD- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 			
 Palo Alto, CA 94303 (US) BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US LNKD- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 	(72)	Inventor: Buelow Bonald	
 (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) GROUP, NEW YORK, NY, US LNKD- DOI: 10.1038/NBT1125, vol. 23, no. 8, 1 August 2005 (2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156 SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 	(12)		
 (74) Representative: Harrison Goddard Foote Belgrave Hall Belgrave Street Leeds LS2 8DD (GB) SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 		1 alo Alto, CA 34303 (00)	
Belgrave Hall Belgrave Street Leeds LS2 8DD (GB)(2005-08-01), pages 967-973, XP002467422, ISSN: 1087-0156• SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048• ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381,	(74)	Penresentative: Harrison Goddard Footo	
Belgrave StreetISSN: 1087-0156LeedsSMITH JULIANNE ET AL: "A combinatorialLS2 8DD (GB)approach to create artificial homingendonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381,	(74)	•	
Leeds• SMITH JULIANNE ET AL: "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048• ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381,		-	
LS2 8DD (GB) approach to create artificial homing endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381,		-	
 endonucleases cleaving chosen sequences", NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 			
NUCLEIC ACIDS RESEARCH, vol. 34, no. 22, December 2006 (2006-12), XP002457876, ISSN: 0305-1048 • ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381,		LS2 8DD (GB)	
December 2006 (2006-12), XP002457876, ISSN: 0305-1048 • ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381,			
0305-1048 • ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381,			
 ZARRIN ALI A ET AL: "Antibody class switching mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01), pages 377-381, 			
mediated by yeast endonuclease-generated DNA breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01) , pages 377-381,			
breaks", SCIENCE (WASHINGTON D C), vol. 315, no. 5810, January 2007 (2007-01) , pages 377-381,			
no. 5810, January 2007 (2007-01) , pages 377-381,			
XP002580717, ISSN: 0036-8075			
			XP002580717, ISSN: 0036-8075

EP 2 336 329 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

• GEURTS ARON M ET AL: "Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases", SCIENCE (WASHINGTON D C), vol. 325, no. 5939, July 2009 (2009-07), page 433, XP002580718, ISSN: 0036-8075

Description

SUMMARY OF THE INVENTION

⁵ **[0001]** The invention relates to transgenic animals having one or more inactivated endogenous immunoglobulin loci and methods for making the same. The invention further relates to compositions and methods for the production of humanized and fully human antibodies using such transgenic animals, and antibodies so produced.

BACKGROUND OF THE INVENTION

10

[0002] Antibodies are an important class of pharmaceutical products that have been successfully used in the treatment of various human diseases and conditions, including infectious diseases, cancer, allergic diseases, and graft-versus-host disease, as well as in the prevention of transplant rejection.

- [0003] One problem associated with the therapeutic application of non-human immunoglobulins is the potential im-¹⁵ munogenicity of the same in human patients. In order to reduce the immunogenicity of such preparations, various strategies for the production of partially human (humanized) and fully human antibodies have been developed. The ability to produce transgenic antibodies having a human idiotype in non-human animals is particularly desirable as antigen binding determinants lie within the idiotype region, and non-human idiotypes are thought to contribute to the immunogenicity of current antibody therapeutics. Human idiotype is an especially important consideration in respect of
- ²⁰ monoclonal antibody therapeutics, which consist of a single idiotype delivered at relatively high concentration as opposed to the variety of idiotypes delivered at lower concentrations by a polyclonal antibody mixture.
 [0004] While a number of approaches to producing humanized transgenic antibodies in non-human animals have been described, one major problem encountered in many such approaches is the production of endogenous antibody, either preferentially or in combination with transgenic antibodies in the host animal. Various recombinant cloning schemes
- ²⁵ have been used in attempts to disrupt endogenous immunoglobulin production in host animals to address this problem. However, the functional inactivation of immunoglobulin genes presents many obstacles in many vertebrate species. [0005] For example, while homozygous mutant mice with deleted JH-loci have been successfully produced using homologous recombination, ES or other sustainable pluripotent cells in which homologous recombination can be done to inactivate endogenous loci are not readily available from most vertebrate species.
- 30 [0006] Further, mutations that interfere with cell surface expression but not with productive rearrangement of immunoglobulin VDJ or VJ gene-segments are insufficient to inactivate endogenous Ig expression completely. This is exemplified by the fact that homozygous mutant mice with a disrupted membrane exon of the μ heavy chain (so called μMT mice) cannot produce IgM or IgG, but still produce significant quantities of igA (Macpehrson et al. Nature Immunol 2(7): 625-631 (2001). In addition, the serum of heterozygous mutant mice contains IgM and IgG encoded by both alleles, the
- ³⁵ wild-type allele and the mutated µMT allele (Kitamura and Rajewky, Nature 356:154-156 (1992). This is due to the fact that the first rearrangement in the course of B-cell development is the joining of DH- and JH-gene segments on both homologous chromosomes, generating a pro-B cell. If, in the µMT/+ mice, a pro-B cell undergoes subsequent VH-DHJH joining in the mutated IgH locus first and the joining is in frame ("productive"), the resulting pre-B cell can express a µ chain of the secreted form, but cannot express membrane-bound µ. Since membrane-bound µ expression is required
- 40 for allelic exclusion, such a cell is still able to undergo VH-DHJH joining in the wild-type IgH locus; and if this second rearrangement is also productive, the cell expresses two different μ chains, one of which is membrane-bound. Serum of such mice contains IgM derived from both alleles. In addition, IgG derived from both alleles can be found in the serum of such mice because switching is often concomitantly induced on both IgH loci of a B cell.
 (20077) Incomplete allelia avaluation is also productive in alleles and a second in an analysis.
- [0007] Incomplete allelic exclusion is also observed in animals with functional transgenic immunoglobulin loci and mutated endogenous immunoglobulin loci that can still rearrange VDJ or VJ gene segments productively. A B-cell rearranging VH-DHJH in one or both mutated endogenous loci may still rearrange transgenic immunoglobulin loci productively. Such a B-cell expresses membrane-bound transgenic immunoglobulin and develops into a mature B-cell. During B-cell development isotype switching in the mutated endogenous locus may result in a B-cell expressing endogenous immunoglobulin. Accordingly, such mutations are insufficient for the complete inactivation of endogenous immunoglobulin expression in animals with transgenic immunoglobulin loci.
- **[0008]** Gorman et al. (1991, Reshaping a therapeutic CD4 antibody.PNAS, 88) discloses an immunosuppressive rat antibody (compath-9) against human DC4 which was re-shaped for use in the management of autoimmunity and the prevention of graft rejection.

55 SUMMARY OF INVENTION

[0009] A major problem associated with the production of humanized transgenic antibodies in non-human animals has been the preferential production or co-production of endogenous antibodies in the host. The current invention solves

this problem by providing transgenic animals that harbor at least one artificial Ig locus and lack the capacity to produce endogenous immunoglobulin. These animals are highly useful for the production of humanized and fully human transgenic antibodies. The methods used to generate such transgenic animals are effective in many species, including species from which ES cells or sustainable pluripotent cells are not currently readily available and in which homologous recom-

- ⁵ bination and gene knockouts are not readily done. [0010] The present invention stems in part from the finding that a meganuclease may be used to functionally ablate endogenous immunoglobulin loci to generate transgenic animals useful for the production of humanized and fully human transgenic antibodies. Further, two distinct meganucleases targeting distinct genomic sites may be used to effectively delete a large portion of an immunoglobulin locus (up to several kb), thereby ensuring complete inactivation of the locus
- ¹⁰ and further ensuring that transgenic animals carrying the germline mutation do not generate any B cells capable of endogenous immunoglobulin production.

[0011] In one aspect, the invention provides a method of generating a rat, comprising:

15

20

(A) injecting into a rat germ cell, rat fertilized oocyte or a rat embryo, a meganuclease specific for Ig gene fragments in heavy and/or light chain loci endogenous to the rat, wherein the meganuclease introduces double-strand_breaks into said heavy and/or light chain loci; or

(B) injecting into a rat germ cell, rat fertilized oocyte or a rat embryo, an expression vector or nucleic acid encoding a meganuclease specific for Ig gene fragments in heavy and/or light chain loci endogenous to the rat, wherein the meganuclease introduces double-strand breaks into said heavy and/or light chain loci.

[0012] In a second aspect, the invention provides a rat which is nullizygous for endogenous Ig light chain loci and/or endogenous heavy chain loci.

- **[0013]** In a third aspect, the invention provides a method for producing a monoclonal antibody, comprising: (i) immunizing a rat of the invention with an immunogen; (ii) isolating a monoclonal antibody producing cell from the rat wherein the monoclonal antibody producing cell produces a monoclonal antibody that specifically binds to the immunogen; and (iii) using the monoclonal antibody producing cell to produce the monoclonal antibody that specifically binds to the immunogen, or using the monoclonal antibody producing cell to produce a hybridoma cell that produces the monoclonal antibody and using the hybridoma cell to produce the monoclonal antibody.
- ³⁰ **[0014]** In a fourth aspect, the invention provides a method for producing a monoclonal antibody comprising: (i) immunizing a rat of the invention with an immunogen; (ii) isolating a monoclonal antibody producing cell from the rat wherein the monoclonal antibody producing cell produces a monoclonal antibody that specifically binds to the immunogen; (iii) isolating from the monoclonal antibody producing cell a monoclonal antibody nucleic acid which encodes the monoclonal antibody that specifically binds to the immunogen; and (iv) using the monoclonal antibody nucleic acid to produce the
- ³⁵ monoclonal antibody that specifically binds to the immunogen, wherein optionally the monoclonal antibody has a human idiotype.

[0015] In a fifth aspect, the invention provides a method for producing a monoclonal antibody comprising: (i) immunizing a rat of the invention with an immunogen; (ii) isolating a monoclonal antibody producing cell from the rat wherein the monoclonal antibody producing cell produces a monoclonal antibody that specifically binds to the immunogen; (iii))

- 40 isolating from the monoclonal antibody producing cell a monoclonal antibody nucleic acid which encodes the monoclonal antibody that specifically binds to the immunogen; (iv) modifying the monoclonal antibody nucleic acid to produce a recombinant nucleic acid encoding a fully human monoclonal antibody; and (v) using the recombinant nucleic acid encoding a fully human monoclonal antibody to produce the encoded fully human monoclonal antibody.
 FORCE Is a sittle activation of the immunogen and the produce the encoded fully human monoclonal antibody.
 - **[0016]** In a sixth aspect, the invention provides a cell obtainable by a method of the invention.
- ⁴⁵ **[0017]** In a seventh aspect, the invention provides a transfected cell comprising a nucleic acid encoding a monoclonal antibody of the invention.

[0018] In an eighth aspect, the invention provides the transfected cell comprising a monoclonal nucleic acid which encodes the monoclonal antibody that specifically binds to the immunogen as defined above.

[0019] In a ninth aspect, the invention provides an isolated nucleic acid encoding the monoclonal antibody obtainable by a method of the invention, wherein the artificial locus comprises at least one human J gene segment, wherein the monoclonal antibody is a chimeric immunoglobulin which comprises a portion of human immunoglobulin polypeptide sequence and a portion of rat immunoglobulin polypeptide sequence.

[0020] In a tenth aspect, the invention provides a chimeric immunoglobulin comprising a polypeptide sequence encoded by a nucleic acid of the invention, wherein the chimeric immunoglobulin comprises a portion of human immunoglobulin polypeptide sequence and a portion of rat immunoglobulin polypeptide sequence.

[0021] In an eleventh aspect, the invention provides a transfected cell comprising the nucleic acid of the invention.

[0022] Accordingly, the invention provides transgenic animals comprising at least one artificial Ig locus and having at least one germline inactivated endogenous Ig locus. The animals used in the invention are small laboratory animals,

particularly birds, rodents and weasels. The artificial loci used in the invention comprise at least one human V gene segment. In a preferred embodiment, an artificial Ig locus comprises (i) a V-region having at least one human V gene segment encoding a germline or hypermutated human V-region amino acid sequence; (ii) one or more J gene segments; and (iii) one or more constant region genes, wherein the artificial Ig locus is functional and capable of undergoing gene rearrangement and producing a repertoire of immunoglobulins in the transgenic animal.

[0023] In one embodiment, the transgenic animal comprises an inactivated endogenous Ig heavy chain locus. In a preferred embodiment, the transgenic animal has both endogenous Ig heavy chain loci inactivated and accordingly does not carry a functional endogenous Ig heavy chain locus.

5

25

30

[0024] In one embodiment, the transgenic animal comprises an inactivated endogenous lg light chain locus. In a preferred embodiment, the transgenic animal has both endogenous lg light chain loci inactivated and accordingly does not carry a functional endogenous lg light chain locus.

[0025] In a preferred embodiment, the transgenic animal lacks a functional endogenous Ig heavy chain locus and a functional Ig light chain locus.

[0026] In one embodiment, the transgenic animal comprises at least one artificial Ig heavy chain locus. In one embodiment, the transgenic animal lacks a functional Ig light chain locus and comprises at least one artificial Ig heavy chain locus.

[0027] In one embodiment, the transgenic animal comprises at least one artificial Ig light chain locus.

[0028] In one embodiment, the transgenic animal comprises at least one artificial Ig heavy chain locus and at least one artificial Ig light chain locus.

²⁰ **[0029]** In a preferred embodiment, artificial Ig loci are functional and capable of undergoing gene rearrangement and producing a repertoire of immunoglobulins in the transgenic animal, which repertoire of immunoglobulins includes immunoglobulins having a human idiotype.

[0030] In one embodiment, one or more constant region genes of the artificial Ig loci comprise at least one non-human constant region gene and are functional and capable of undergoing gene rearrangement and producing a repertoire of chimeric immunoglobulins in the transgenic animal, which repertoire of chimeric immunoglobulins includes chimeric immunoglobulins having a human idiotype.

[0031] In one embodiment, one or more constant region genes of the artificial Ig loci comprise at least one human constant region gene and are functional and capable of undergoing gene rearrangement and producing a repertoire of immunoglobulins in the transgenic animal, which repertoire of immunoglobulins includes immunoglobulins having a human idiotype and human constant region.

[0032] The invention comprises transgenic animals capable of generating viable germ cells having at least one endogenous Ig locus that is inactivated.

[0033] In one embodiment, such transgenic animals comprise a genomic meganuclease expression construct, preferably a construct having an inducible expression control region operably linked to a meganuclease-encoding nucleic

³⁵ acid, wherein the encoded meganuclease recognizes a meganuclease target sequence present in or proximal to an endogenous Ig locus of the transgenic animal. When the transgenic animal is sexually mature and comprises viable germ cells, and the genomic meganuclease expression construct may be used to inactivate the targeted endogenous Ig locus in such germ cells, in vitro or in vivo, without compromising the viability thereof, ensuring F1 animals carrying a germline mutation in an Ig locus may be derived therefrom.

40 [0034] In one embodiment, the transgenic animal further comprises at least one artificial Ig locus.

[0035] The invention includes transgenic animals comprising viable germ cells wherein at least one endogenous Ig locus is inactivated. In one embodiment, the transgenic animal further comprises at least one artificial Ig locus.

[0036] In one embodiment, the invention provides methods for producing transgenic animals comprising at least one artificial Ig locus and having at least one germline inactivated endogenous Ig locus. In a preferred embodiment, the transgenic animal is nullizygous for endogenous Ig light chain and/or endogenous Ig heavy chain.

- **[0037]** Preferably, an endogenous Ig locus is inactivated in a parent germ cell, or the germ cell of a predecessor, by expression of a meganuclease therein. The methods comprise producing a meganuclease in the germ cell, wherein the meganuclease recognizes a meganuclease target sequence present in or proximal to an endogenous Ig locus and selectively inactivates the targeted Ig locus in the germ cell thereby producing a viable germ cell having at least one
- ⁵⁰ inactivated endogenous Ig locus. Such a germ cell having at least one inactivated endogenous Ig locus is used to produce an animal having at least one germline inactivated endogenous Ig locus. In one embodiment, the germ cell, or that which it is combined with, comprises at least one artificial Ig heavy chain locus. In one embodiment, the germ cell, or that which it is combined with, comprises at least one artificial Ig light chain locus. In one embodiment, the germ cell, or that which it is combined with, comprises at least one artificial Ig light chain locus. In one embodiment, the germ cell, or that which it is combined with, comprises at least one artificial Ig light chain locus and at least one artificial Ig heavy chain locus.

⁵⁵ **[0038]** In one embodiment, the methods involve introducing a meganuclease expression construct or meganuclease encoding nucleic acid into the germ cell.

[0039] In a preferred embodiment, the germ cell comprises a genomic meganuclease expression construct, which comprises an expression control region operably linked to a meganuclease-encoding nucleic acid. In a preferred em-

bodiment, the germ cell comprises an inducible genomic meganuclease expression construct and the methods involve inducing expression of the meganuclease-encoding nucleic acid in the germ cell. In one embodiment, the methods involve repeating the step of inducing expression of the meganuclease-encoding nucleic acid in the germ cell. In one embodiment, induction is done in vivo. In another embodiment, induction is done in vitro. In one embodiment, the germ

⁵ cell comprises a genomic meganuclease expression construct, which comprises an expression control region that exhibits germ cell-specific activity.

[0040] Resultant germ cells may be used to generate an F1 animal having at least one germline inactivated endogenous Ig locus. The F1 animal may comprise one or more artificial Ig loci or may be crossed in order to generate such animals comprising at least one artificial Ig locus.

- 10 [0041] In an alternative embodiment, the method involves introducing a meganuclease expression construct or meganuclease-encoding nucleic acid into a fertilized oocyte or embryo and generating a viable germ cell having at least one inactivated Ig locus in the resultant founder animal. The founder animal can be used to generate an F1 animal having at least one germline inactivated endogenous Ig locus. The F1 animal may comprise one or more artificial Ig loci or may be crossed in order to generate such animals comprising at least one artificial Ig locus.
- [0042] In one embodiment, the meganuclease target sequence is present in or proximal to a J gene segment.
 [0043] In one embodiment, the meganuclease target sequence is present in or proximal to an immunoglobulin constant region gene segment. In a preferred embodiment, the constant region gene encodes immunoglobulin μ.
 [0044] In one embodiment, the methods involve screening germ cells for viability and inactivation of an endogenous Ig locus. In one embodiment, the methods involve screening germ cells for the presence of an artificial Ig locus.
- [0045] In methods herein, the crossing of animals is preferably between animals having inactivated endogenous loci, to generate animals that are nullizygous for endogenous lg light chain and/or endogenous lg heavy chain.
 [0046] In a preferred embodiment, the methods further comprise the use of a second meganuclease. The second meganuclease recognizes a second meganuclease target sequence present in or proximal to the endogenous lg locus and selectively cleaves the endogenous lg locus together with the first meganuclease but at a site distinct from that of
- 25 the first meganuclease, thereby inactivating at least one endogenous Ig locus. [0047] In a preferred embodiment, the germ cell comprises a second genomic meganuclease expression construct, which comprises an expression control region operably linked to a second meganuclease-encoding nucleic acid. In a preferred embodiment, the expression control region is an inducible expression control region, and the method further comprises inducing expression of the second meganuclease-encoding nucleic acid in the germ ceil, whereby the encoded
- 30 second meganuclease is produced and, together with the first meganuclease, selectively inactivates the targeted lg locus in the germ cell. In one embodiment, the methods involve repeating the step of inducing expression of the second meganuclease-encoding nucleic acid in the germ cell. In one embodiment, induction is done in vivo. In one embodiment, induction is done in vitro. In one embodiment, the second genomic meganuclease expression construct comprises an expression control region that exhibits germ cell-specific activity.
- ³⁵ [0048] In an alternative embodiment, the methods involve introducing a second meganuclease expression construct or second meganuclease-encoding nucleic acid into the germ cell.
 [0049] In an alternative embodiment, the methods involve introducing a second meganuclease expression construct or second meganuclease-encoding nucleic acid into a fertilized oocyte or embryo and generating a viable germ cell
- having at least one inactivated Ig locus in the resultant founder animal. The founder animal can be used to generate an
 F1 animal having at least one germline inactivated endogenous Ig locus. The F1 animal may comprise one or more artificial Ig loci or may be crossed in order to generate such animals comprising at least one artificial Ig locus.
 [0050] In a preferred embodiment, the first and second meganucleases target J gene segments. In one embodiment,

the first and second meganuclease target sequences are, taken together, upstream and downstream of one or more J gene segments within the endogenous Ig locus, and cleavage by the first and second encoded meganucleases produces
 deletion of a genomic DNA segment comprising the one or more J gene segments.

- [0051] In another embodiment, the first and second meganucleases target constant region gene segments. In one embodiment, the first and second meganuclease target sequences are, taken together, upstream and downstream of one or more immunoglobulin constant region gene segments, and cleavage by the first and second encoded meganucleases produces deletion of a genomic DNA segment comprising the one or more immunoglobulin constant region gene segments. In a preferred embodiment, the constant region gene encodes immunoglobulin μ. [0043]
- [0052] In methods herein, the artificial loci used comprise at least one human V gene segment. In a preferred embodiment, an artificial Ig locus comprises (i) a V-region having at least one human V gene segment encoding a germline or hypermutated human V-region amino acid sequence; (ii) one or more J gene segments; and (iii) one or more constant region genes, wherein the artificial Ig locus is functional and capable of undergoing gene rearrangement and producing a repertoire of immunoglobulins in the transgenic animal.

[0053] In one embodiment, at least one artificial Ig heavy chain locus is incorporated into the genome of a transgenic animal of the invention. In one embodiment, the transgenic animal lacks a functional Ig light chain locus.

[0054] In one embodiment, at least one artificial Ig light chain locus is incorporated into the genome of a transgenic

animal of the invention.

10

[0055] In one embodiment, at least one artificial Ig heavy chain locus and at least one artificial Ig light chain locus are incorporated into the genome of a transgenic animal of the invention.

- [0056] In a preferred embodiment, artificial lg loci are functional and capable of undergoing gene rearrangement and
- ⁵ producing a repertoire of immunoglobulins in the transgenic animal, which repertoire of immunoglobulins includes immunoglobulins having a human idiotype. **100571** In one on the dimension of the artificial leaders and the set of the artificial leaders are been as a set of the artificial leaders are set of the artificial leaders.

[0057] In one embodiment, one or more constant region genes of the artificial lg loci comprise at least one non-human constant region gene and are functional and capable of undergoing gene rearrangement and producing a repertoire of chimeric immunoglobulins in the transgenic animal, which repertoire of chimeric immunoglobulins includes chimeric immunoglobulins having a human idiotype.

- **[0058]** In one embodiment, one or more constant region genes of the artificial Ig loci comprise at least one human constant region gene and are functional and capable of undergoing gene rearrangement and producing a repertoire of immunoglobulins in the transgenic animal, which repertoire of immunoglobulins includes immunoglobulins having a human idiotype and human constant region.
- ¹⁵ **[0059]** Also disclosed are methods of making a transgenic animal of the invention, which methods comprise crossing a transgenic animal having at least one germline inactivated endogenous Ig locus with a second transgenic animal having at least one artificial Ig locus, which locus comprises (i) a V-region having at least one human V gene segment encoding a germline or hypermutated human V-region amino acid sequence; (ii) one or more J gene segments; and (iii) one or more constant region genes, to produce an F1 transgenic animal, wherein the F1 transgenic animal comprises
- the at least one artificial Ig locus of the second transgenic animal, and wherein the artificial Ig locus from the second transgenic animal is functional and capable of undergoing gene rearrangement and producing a repertoire of immunoglobulins in the F1 transgenic animal. The crossing may be done by animal breeding or by otherwise combining gametes, including in vitro manipulations.

[0060] The second transgenic animal may comprise at least one artificial Ig heavy chain locus.

- [0061] The second transgenic animal may comprise at least one artificial Ig light chain locus.
 [0062] Optionally, the first and second transgenic animals lack a functional Ig light chain locus, and the second transgenic animal comprises an artificial Ig heavy chain locus. The animals may be crossed to produce an F1 that lacks a functional Ig light chain locus and comprises an artificial Ig heavy chain locus.
- [0063] Optionally, the second transgenic animal comprises at least two artificial Ig loci, including at least one artificial Ig heavy chain locus and at least one artificial Ig light chain locus. Optionally, the artificial Ig loci of the second transgenic animal are functional and capable of undergoing gene rearrangement and producing a repertoire of immunoglobulins in the F1 transgenic animal, which repertoire of immunoglobulins includes immunoglobulins having a human idiotype. Optionally, one or more constant region genes of the artificial Ig loci of the second transgenic animal comprise at least one non-human constant region gene and are functional and capable of undergoing gene rearrangement and producing
- ³⁵ a repertoire of chimeric immunoglobulins in the F1 transgenic animal, which repertoire of chimeric immunoglobulins includes chimeric immunoglobulins having a human idiotype. Optionally, one or more constant region genes of the artificial Ig loci of the second transgenic animal comprise at least one human constant region gene and are functional and capable of undergoing gene rearrangement and producing a repertoire of immunoglobulins in the F1 transgenic animal, which repertoire of immunoglobulins includes immunoglobulins having a human idiotype and human constant
- 40 region.

55

[0064] Similarly, there are disclosed methods which comprise crossing a second transgenic animal having at least one artificial Ig locus with a transgenic animal of the invention that is capable of generating a viable germ cell having at least one endogenous Ig locus that is inactivated. Preferably, the second transgenic animal comprises at least two artificial Ig loci, including at least one artificial Ig heavy chain locus and at least one artificial Ig light chain locus.

- [0065] In one embodiment, the methods comprise introducing at least one artificial Ig locus into a germ cell having at least one endogenous Ig locus that has been, or is capable of being inactivated by the activity of one or more meganucleases, wherein the at least one artificial Ig locus comprises (i) a V-region having at least one human V gene segment encoding a germline or hypermutated human V-region amino acid sequence; (ii) one or more J gene segments; and (iii) one or more constant region genes, wherein the artificial Ig locus is functional and capable of undergoing gene rear-
- ⁵⁰ rangement and producing a repertoire of artificial immunoglobulins in a transgenic animal derived from the germ cell. The methods further comprise deriving an F1 transgenic animal comprising at least one artificial lg locus and having at least one germline inactivated endogenous lg locus that has been inactivated by the action of one or more meganucleases from the germ cell so produced.
 - [0066] In one embodiment, the at least one artificial Ig locus includes at least one artificial Ig heavy chain locus.
 - **[0067]** In one embodiment, the germ cell lacks a functional Ig light chain locus and the artificial Ig locus introduced into the germ cell is an Ig heavy chain locus.
 - [0068] In one embodiment, the at least one artificial Ig locus includes at least one artificial Ig light chain locus.
 - [0069] In a preferred embodiment, at least two artificial loci are introduced into the germ cell, including at least one

artificial Ig heavy chain locus and at least one artificial Ig light chain locus. In one embodiment, the artificial Ig loci are functional and capable of

undergoing gene rearrangement and producing a repertoire of immunoglobulins in the derived F1 transgenic animal, which repertoire of immunoglobulins includes

- ⁵ immunoglobulins having a human idiotype. In one embodiment, one or more constant region genes of the artificial Ig loci comprise at least one non-human constant region gene and are functional and capable of undergoing gene rearrangement and producing a repertoire of chimeric immunoglobulins in the derived F1 transgenic animal, which repertoire of chimeric immunoglobulins includes chimeric immunoglobulins having a human idiotype, In one embodiment, one or more constant region genes of the artificial Ig loci comprise at least one human constant region gene and are functional
- ¹⁰ and capable of undergoing gene rearrangement and producing a repertoire of immunoglobulins in the derived F1 transgenic animal, which repertoire of immunoglobulins includes immunoglobulins having a human idiotype and human constant region.

[0070] In one embodiment, the methods involve screening germ cells for viability and inactivation of an endogenous Ig locus. In one embodiment, the methods involve screening germ cells for the presence of an artificial Ig locus.

- 15 [0071] In one embodiment, the methods comprise introducing at least one artificial Ig locus into a fertilized oocyte or embryo derived from a germ cell having at least one endogenous Ig locus that has been inactivated, or is capable of being inactivated, by the action of one or more meganucleases, wherein the at least one artificial Ig locus comprises (i) a V-region having at least one human V gene segment encoding a germline or hypermutated human V-region amino acid sequence; (ii) one or more J gene segments; and (iii) one or more constant region genes, wherein the artificial Ig
- 20 locus is functional and capable of undergoing gene rearrangement and producing a repertoire of artificial immunoglobulins in the founder transgenic animal, or a descendant thereof, derived from the fertilized oocyte or embryo. The methods further comprise deriving from the fertilized oocyte or embryo the founder transgenic animal, and optionally the descendant thereof, to yield a transgenic animal comprising at least one artificial Ig locus and having at least one germline inactivated endogenous Ig locus that has been inactivated by the action of one or more meganucleases.
 - [0072] In one embodiment, the at least one artificial Ig locus includes at least one artificial Ig heavy chain locus.

25

55

[0073] In one embodiment, the at least one artificial Ig locus includes at least one artificial Ig light chain locus.

[0074] In one embodiment, the fertilized oocyte or embryo lacks a functional Ig light chain locus, and the artificial Ig locus introduced into the fertilized oocyte or embryo is an Ig heavy chain locus.

- [0075] In a preferred embodiment, at least two artificial loci are introduced into the fertilized oocyte or embryo, including at least one artificial Ig heavy chain locus and at least one artificial Ig light chain locus. In one embodiment, the artificial Ig loci are functional and capable of undergoing gene rearrangement and producing a repertoire of immunoglobulins in the founder transgenic animal, or a descendant thereof, which repertoire of immunoglobulins includes immunoglobulins having a human idiotype. In one embodiment, one or more constant region genes of the artificial Ig loci comprise at least one non-human constant region gene and are functional and capable of undergoing gene rearrangement and producing
- ³⁵ a repertoire of chimeric immunoglobulins in the founder transgenic animal, or a descendant thereof, which repertoire of chimeric immunoglobulins includes chimeric immunoglobulins having a human idiotype. In one embodiment, one or more constant region genes of the artificial Ig loci comprise at least one human constant region gene and are functional and capable of undergoing gene rearrangement and producing a repertoire of immunoglobulins in the founder transgenic animal, or a descendant thereof, which repertoire of immunoglobulins includes immunoglobulins having a human idiotype and human constant region.
 - **[0076]** The disclosure provides methods for producing transgenic animals capable of generating a viable germ cell wherein at least one endogenous lg locus is inactivated. In a preferred embodiment, the methods comprise generating a transgenic animal having a genomic meganuclease expression construct, wherein the expression construct comprises an expression control region operably linked to a meganuclease-encoding nucleic acid. In a preferred embodiment, the

⁴⁵ construct is an inducible genomic meganuclease expression construct that can be induced to express the meganuclease encoding nucleic acid in a germ cell.

[0077] The disclosure provides methods for producing a transgenic animal having a viable germ cell wherein at least one endogenous Ig locus is inactivated. The methods comprise inactivating the endogenous Ig locus in the germ cell, or in a parent germ cell or fertilized oocyte or embryo derived therefrom, by expression of a meganuclease therein.

- ⁵⁰ **[0078]** The disclosure provides a viable germ cell wherein at least one endogenous Ig locus is capable of being inactivated. In a preferred embodiment, the germ cell comprises a genomic meganuclease expression construct, wherein the expression construct comprises an expression control region operably linked to a meganuclease-encoding nucleic acid. In a preferred embodiment, the construct is an inducible genomic meganuclease expression construct that can be induced to express the meganuclease-encoding nucleic acid in a germ cell.
 - **[0079]** Optionally, the germ cell comprises at least one artificial Ig heavy chain locus.
 - **[0080]** Optionally, the germ cell comprises at least one artificial Ig light chain locus.

[0081] Optionally, the germ cell comprises at least one artificial Ig heavy chain locus and at least one artificial Ig light chain locus.

[0082] Also disclosed is a viable germ cell wherein at least one endogenous Ig locus is inactivated.

[0083] Optionally, the germ cell comprises at least one artificial Ig heavy chain locus.

[0084] Optionally, the germ cell comprises at least one artificial Ig light chain locus.

5

40

55

[0085] Optionally, the germ cell comprises at least one artificial Ig heavy chain locus and at least one artificial Ig light chain locus.

[0086] The disclosure provides methods for producing a viable germ cell having at least one inactivated endogenous Ig locus. The methods involve expressing at least one meganuclease in a germ cell, fertilized oocyte or embryo, to generate a viable germ cell having at least one inactivated endogenous Ig locus. The meganuclease so expressed recognizes a meganuclease target sequence present in or proximal to said endogenous Ig locus.

¹⁰ **[0087]** Optionally, wherein the meganuclease is expressed in a germ cell, the germ cell in which the meganuclease is expressed yields a viable germ cell having at least one inactivated endogenous Ig locus. Alternatively, a viable germ cell having at least one inactivated endogenous Ig locus may be obtained from an animal derived from the germ cell in which the meganuclease was expressed.

[0088] Optionally, wherein the meganuclease is expressed in a fertilized oocyte or embryo, the viable germ cell having at least one inactivated endogenous Ig locus may be obtained from an animal derived from the fertilized oocyte or embryo in which the meganuclease was expressed.

[0089] Optionally, the at least one endogenous Ig locus is inactivated in vitro. In one embodiment, the at least one endogenous Ig locus is inactivated in vivo.

[0090] Optionally, the germ cell further comprises at least one artificial lg locus. In one embodiment, the at least one artificial lg locus includes at least one artificial lg heavy chain locus. In one embodiment, the at least one artificial lg locus includes at least one artificial lg light chain locus.

[0091] Optionally, at least two artificial Ig loci are introduced into the germ cell, including at least one artificial Ig heavy chain locus and at least one artificial Ig light chain locus.

[0092] Also disclosed are polyclonal antibodies, monoclonal antibodies, hybridomas, and methods of making and using the same, which stem from the production of antibodies in the presently disclosed transgenic animals carrying one or more artificial loci and having one or more endogenous Ig loci inactivated by way of meganuclease activity.

[0093] Optionally, the antibodies are heavy chain-only antibodies, which are produced using transgenic animals which lack a functional lg light chain locus and comprise an artificial heavy chain locus, achieved by methods described herein.[0094] Further disclosed are methods for producing antibodies using transgenic animals provided herein. The methods

- 30 comprise immunizing a transgenic animal of the invention, which animal has at least one inactivated endogenous Ig locus and carries at least one artificial Ig locus as described herein, with an immunogen. In a preferred method, the transgenic animal is nullizygous for endogenous Ig heavy chain and/or endogenous Ig light chain and, accordingly, incapable of producing endogenous immunoglobulins. In one method, the transgenic animal lacks a functional Ig light chain locus and comprises an artificial Ig heavy chain locus.
- ³⁵ **[0095]** The disclosure includes polyclonal antisera compositions so produced. Polyclonal antisera of the invention preferably comprise antibodies having a human idiotype. Preferably, a polyclonal antiserum comprises antibodies that consist essentially of antibodies having a human idiotype.
 - [0096] The invention, provides methods for producing monoclonal antibodies as described above.
 - [0097] In a preferred embodiment, the monoclonal antibody has a human idiotype.
 - **[0098]** The invention provides monoclonal antibodies produced by the above methods.
 - [0099] The invention provides isolated nucleic acids encoding such monoclonal antibodies.

[0100] The invention includes fully human monoclonal antibodies produced by the methods for producing fully human monoclonal antibodies described above.

[0101] In one embodiment, an immunogen used in methods herein comprises a disease-causing organism or antigenic portion thereof.

[0102] In one embodiment, an immunogen used in methods herein is an antigen endogenous to humans. In an alternative embodiment, an immunogen used in methods herein is an antigen exogenous to humans.

[0103] The disclosure includes methods for neutralizing or modulating the activity of an antigenic entity in a human body component. In one embodiment, the methods comprise contacting the body component with a polyclonal antisera composition of the invention, wherein the polyclonal antisera composition comprises immunoglobulin molecules that specifically bind to and neutralize or modulate the activity of the antigenic entity.

[0104] Optionally, the methods comprise contacting the body component with a monoclonal antibody of the invention, wherein the monoclonal antibody specifically binds to and neutralizes or modulates the activity of the antigenic entity.

- **[0105]** Optionally, the monoclonal antibody is a fully human monoclonal antibody.
- [0106] Optionally, the antigenic entity is from an organism that causes an infectious disease.
 - **[0107]** Optionally, the antigenic entity is a cell surface molecule.
 - **[0108]** Optionally, the antigenic entity is a human cytokine or a human chemokine.
 - [0109] Optionally, the antigenic entity is a cell surface molecule on a malignant cancer cell.

- **[0110]** Cells may be derived from transgenic animals of the invention.
- [0111] Cells may be derived from the spleen of transgenic animals of the invention.
- **[0112]** Further disclosed are B cells derived from transgenic animals of the invention, which B cells are capable of producing antibodies having a human idiotype and germ cells derived from transgenic animals of the invention.
- ⁵ **[0113]** The disclosure includes methods for making hybridomas capable of producing antibodies having a human idiotype. The methods comprise the use of cells derived from transgenic animals of the invention.
 - **[0114]** The disclosure includes hybridomas so produced and antibodies having a human idiotype, which antibodies are produced by a hybridoma of the invention. Also disclosed are pharmaceutical compositions comprising an antibody of the invention, which antibody has a human idiotype.
- ¹⁰ **[0115]** Also disclosed are methods of treating a patient in need of treatment, comprising administering a therapeutically effective amount of a pharmaceutical composition of the invention to the patient.

BRIEF DESCRIPTION OF THE DRAWINGS

20

- ¹⁵ **[0116]** Figure 1 shows a schematic representation of an artificial heavy chain consisting of a human V-, D, and Jregion, a rat intronic enhancer and several artificial constant region genes. Artificial constant region genes contain exons encoding a human CH1 domain and rat CH2, 3 and 4 domains. Membrane spanning and cytoplasmic polypeptide sequences are encoded by rat exons.
 - [0117] Figure 2. Schematic of the interaction of I-Scel and DNA at 3' end of recognition sequence.
 - [0118] Figure 3. Schematic of the interaction of the 5' end of the I-Scel recognition sequence with I-Scel.
 - [0119] Figure 4. Schematic of sequence recognition mechanism of I-Crel (from Nucleic Acids Res., 34, 4791-4800).
 - **[0120]** Figure 5. Schematic diagram of the strategy for altering recognition sequence of I-Crel.

[0121] Figure 6. Zinc-finger proteins (ZFP) designed against sequences encoding rat IgM were expressed in cells, chromosomal DNA was prepared, and the appropriate region of the IgM locus was PCR amplified. Reaction products

²⁵ were analyzed by polyacrylamide gel electrophoresis. The figure shows a typical example demonstrating cleavage activity.

DETAILED DESCRIPTION OF THE INVENTION

- ³⁰ **[0122]** By "artificial immunoglobulin locus" is meant an immunoglobulin locus comprising fragments of human and non-human immunoglobulin loci, including multiple immunoglobulin gene segments, which include at least one variable region (V) gene segment, one or more J gene segments, one or more D gene segments in the case of a heavy chain locus, and one or more constant region gene segments. In the present invention, at least one of the V gene segments encodes a germline or hypermutated human V-region amino acid sequence. In a preferred embodiment, an artificial
- ³⁵ immunoglobulin locus of the invention is functional and capable of rearrangement and producing a repertoire of immunoglobulins. In a preferred embodiment, at least one D gene segment is a human D gene segment. "Artificial Ig locus" as used herein can refer to unrearranged loci, partially rearranged loci, and rearranged loci. Artificial Ig loci include artificial Ig light chain loci and artificial Ig heavy chain loci. In one embodiment, an artificial Ig locus comprises a nonhuman C region gene and is capable of producing a repertoire of immunoglobulins including chimeric immunoglobulins
- ⁴⁰ having a non-human C region. In one embodiment, an artificial Ig locus comprises a human C region gene and is capable of producing a repertoire of immunoglobulins including immunoglobulins having a human C region. In one embodiment, an artificial Ig locus comprises an "artificial constant region gene", by which is meant a constant region gene comprising nucleotide sequences derived from human and non-human constant regions genes. For example, an exemplary artificial C constant region gene is a constant region gene encoding a human IgG CH1 domain and rat IgG CH2 and CH3 domain.
- ⁴⁵ **[0123]** In some embodiments, an artificial Ig heavy chain locus lacks CH1, or an equivalent sequence that allows the resultant immunoglobulin to circumvent the typical immunoglobulin: chaperone association. Such artificial loci provide for the production of heavy chain-only antibodies in transgenic animals which lack a functional Ig light chain locus and hence do not express functional Ig light chain. Such artificial Ig heavy chain loci are used in methods herein to produce transgenic animals lacking a functional Ig light chain locus, and comprising an artificial Ig heavy chain locus, which
- ⁵⁰ animals are capable of producing heavy chain-only antibodies. Alternatively, an artificial Ig locus may be manipulated in situ to disrupt CH1 or an equivalent region and generate an artificial Ig heavy chain locus that provides for the production of heavy chain-only antibodies. Regarding the production of heavy chain-only antibodies in light chain-deficient mice, see for example Zou et al., JEM, 204:3271-3283, 2007.
- **[0124]** By "human idiotype" is meant a polypeptide sequence present on a human antibody encoded by an immunoglobulin V-gene segment. The term "human idiotype" as used herein includes both naturally occurring sequences of a human antibody, as well as synthetic sequences substantially identical to the polypeptide found in naturally occurring human antibodies. By "substantially" is meant that the degree of amino acid sequence identity is at least about 85%-95%. Preferably, the degree of amino acid sequence identity is greater than 90%, more preferably greater than 95%.

[0125] By a "chimeric antibody" or a "chimeric immunoglobulin" is meant an immunoglobulin molecule comprising a portion of a human immunoglobulin polypeptide sequence (or a polypeptide sequence encoded by a human Ig gene segment) and a portion of a non-human immunoglobulin polypeptide sequence. The chimeric immunoglobulin molecules of the present invention are immunoglobulins with non-human Fc-regions or artificial Fc-regions, and human idiotypes.

⁵ Such immunoglobulins can be isolated from animals of the invention that have been engineered to produce chimeric immunoglobulin molecules.

[0126] By "artificial Fc-region" is meant an Fc-region encoded by an artificial constant region gene.

[0127] The term "Ig gene segment" as used herein refers to segments of DNA encoding various portions of an Ig molecule, which are present in the germline of non-human animals and humans, and which are brought together in B cells to form rearranged Ig genes. Thus, Ig gene segments as used herein include V gene segments, D gene segments,

J gene segments and C region gene segments. **[0128]** The term "human Ig gene segment" as used herein includes both naturally occurring sequences of a human Ig gene segment, degenerate forms of naturally occurring sequences of a human Ig gene segment, as well as synthetic sequences that encode a polypeptide sequence substantially identical to the polypeptide encoded by a naturally occurring

¹⁵ sequence of a human lg gene segment. By "substantially" is meant that the degree of amino acid sequence identity is at least about 85%-95%. Preferably, the degree of amino acid sequence identity is greater than 90%, more preferably greater than 95%.

[0129] By "meganuclease" is meant an endodeoxyribonuclease that recognizes long recognition sites in DNA, preferably at least 12, more preferably at least 13, more preferably at least 14, more preferably at least 15, more preferably

- at least 16, more preferably at least 17, and most preferably at least 18 nucleotides in length. Meganucleases include zinc-finger nucleases, naturally occurring homing endonucleases and custom engineered zinc-finger nucleases and homing endonucleases. What is required for use in the invention is that the meganuclease recognize a meganuclease target sequence present in or proximal to an endogenous Ig locus in the subject animal such that a functional mutation may be introduced in the Ig locus by the action of the meganuclease. For more discussion of meganucleases, see, for
- ²⁵ example, U.S. Patent Application Publication Nos. 20060206949, 20060153826, 20040002092, 20060078552, and 20050064474.

[0130] Zinc-finger nucleases with altered specificity can be generated by combining individual zinc fingers with different triplet targets. The specificity of naturally occurring homing endonucleases can be altered by structure-based protein engineering. For example, see Proteus and Carroll, nature biotechnology 23(8):967-97, 2005.

- 30 [0131] An animal having a "germline inactivated lg locus", or "germline inactivated endogenous lg locus", or "germline mutation in an endogenous lg locus", has an inactivated endogenous lg locus in every cell, i.e., every somatic and germ cell. In the present invention, animals having germline inactivated loci are produced by mutation, as effected by the action of a meganuclease in a germ cell which gives rise to the resultant animal, or a predecessor thereof.
 - [0132] Production of Viable Germ Cells and Transgenic Animals Having Inactivated Endogenous Ig Loci
- ³⁵ **[0133]** In the present invention, meganucleases are used to inactivate endogenous Ig loci so as to produce viable germ cells having at least one inactivated endogenous Ig locus. The methods involve expressing at least one meganuclease in a germ cell, fertilized oocyte or embryo, to generate a viable germ cell having at least one inactivated endogenous Ig locus. The meganuclease so expressed recognizes a meganuclease target sequence present in or proximal to an endogenous Ig locus in the subject animal.
- ⁴⁰ **[0134]** In one embodiment, wherein the meganuclease is expressed in a germ cell, the germ cell in which the meganuclease is expressed yields a viable germ cell having at least one inactivated endogenous Ig locus. Alternatively, a viable germ cell having at least one inactivated endogenous Ig locus may be obtained from an animal derived from the germ cell in which the meganuclease was expressed.

[0135] In one embodiment, wherein the meganuclease is expressed in a fertilized oocyte or embryo, the viable germ cell having at least one inactivated endogenous Ig locus may be obtained from an animal derived from the fertilized oocyte or embryo in which the meganuclease was expressed.

[0136] The invention also provides methods for producing transgenic animals comprising at least one germline inactivated endogenous Ig locus. The methods comprise deriving a transgenic animal from a viable germ cell having at least one inactivated endogenous Ig locus produced according to the methods herein.

- [0137] In one embodiment, the viable germ cell having at least one inactivated endogenous Ig locus further comprises an artificial Ig locus, and the transgenic animal so produced comprises an artificial Ig locus.
 [0138] In one embodiment, the methods further comprise introducing an artificial Ig locus into the viable germ cell having at least one inactivated endogenous Ig locus, or a germ cell descendant thereof or a fertilized oocyte or embryo derived therefrom, and the transgenic animal so produced comprises an artificial Ig locus
- ⁵⁵ **[0139]** In one embodiment, the methods comprise combining a viable germ cell having at least one inactivated endogenous Ig locus, or a germ cell descendant thereof, with a gamete comprising an artificial Ig locus, and the transgenic animal so produced comprises an artificial Ig locus.

[0140] Inactivation of endogenous Ig loci

[0141] Inactivation of endogenous Ig loci is done using meganucleases specific for immunoglobulin gene fragments in heavy and/or light chain loci endogenous to the subject animal. In one embodiment double-strand breaks may be induced by injection of a meganuclease into germ cells, fertilized oocytes or embryos. Alternatively, expression vectors or nucleic acid encoding a meganuclease and capable of being expressed in germ cells, fertilized oocytes or embryos may be injected into the same.

[0142] In one embodiment, the method involves transfecting germ cells, which may include precursors thereof such as spermatagonial stem cells, in vitro or in vivo with a meganuclease encoding nucleic acid or expression construct. For example, see Ryu et al., J. Aridrol., 28:353-360, 2007; Orwig et al., Biol. Report, 67:874-879, 2002.

5

[0143] In a preferred embodiment, a meganuclease expression construct is integrated into the genome of the subject animal. Expression of the transgene encoding the meganuclease in germ cells will result in double-strand breaks in endogenous lg loci and subsequent mutation of the restriction site. Mating of such transgenic animals results in offspring with mutated/inactivated immunoglobulin loci.

[0144] In a highly preferred embodiment of the present invention, a regulatable meganuclease expression construct is integrated into the genome of the subject animal, which regulatable construct is inducible in germ cells. Such constructs

- ¹⁵ provide for minimization of cytotoxic effects associated with expression of a particular meganuclease through controlled expression via inducible promoters, e.g., heat-inducible promoters, radiation-inducible promoters, tetracycline operon, hormone inducible promoters, and promoters inducible by dimerization of transactivators, and the like. For example, see Vilaboa et al., Current Gene Therapy, 6:421-438, 2006.
 - [0145] Alternatively, meganuclease expression may be induced in an embryo derived from the germ cell.
- 20 [0146] In one embodiment, a single meganuclease is expressed in a germ cell, wherein the meganuclease recognizes a target sequence in or proximal to an immunoglobulin locus endogenous to the germ cell of the subject animal. In a preferred embodiment, the meganuclease target sequence is in or proximal to a J gene segment. In another preferred embodiment, the meganuclease target sequence is in or proximal to an immunoglobulin constant region gene. In a preferred embodiment, the immunoglobulin constant region gene encodes immunoglobulin μ.
- 25 [0147] In a preferred embodiment, at least two meganucleases having distinct target sequences are used. The at least two meganucleases are expressed in a germ cell, wherein the meganucleases recognize distinct target sequences in or proximal to an immunoglobulin locus endogenous to the germ cell of the subject animal.
 [0149] In a preferred embodiment, the first and account meganucleases target target sequences in a germ cell of the subject animal.

[0148] In a preferred embodiment, the first and second meganucleases target J gene segments. In one embodiment, the first and second meganuclease target sequences are, taken together, upstream and downstream of one or more J gene segments within the endogenous Ig locus, and cleavage by the first and second encoded meganucleases produces deletion of a genomic DNA segment comprising the one or more J gene segments.

[0149] In another embodiment, the first and second meganucleases target constant region gene segments. In one embodiment, the first and second meganuclease target sequences are, taken together, upstream and downstream of one or more immunoglobulin constant region gene segments, and cleavage by the first and second encoded meganucleases produces deletion of a genomic DNA segment comprising the one or more immunoglobulin constant region

- gene segments. In a preferred embodiment, the constant region gene encodes immunoglobulin μ . **[0150]** In one embodiment, an entire endogenous Ig heavy chain and/or Ig light chain locus, or large parts thereof are deleted from the genome of the subject animal. Such animals are also referred to as comprising an endogenous locus that has been inactivated.
- ⁴⁰ **[0151]** In one embodiment, at least one meganuclease is used to disrupt the CH1 region of an endogenous Ig heavy chain locus, leaving the remainder of the locus intact and capable of producing an Ig heavy chain that circumvents the typical immunoglobulin:chaperone association. Preferably, this CH1 targeting is done in an animal lacking a functional Ig light chain locus. Such targeting in such animals is useful for producing heavy chain-only antibodies.
 - **[0152]** In one embodiment, more than one meganuclease is used to target CH1 within the lg heavy chain locus.

⁴⁵ **[0153]** In one embodiment, two meganucleases recognizing adjacent sites are used. In one embodiment, the sites are elements of a palindrome. In one embodiment, the two meganucleases are tethered by a linker.

[0154] In preferred embodiments, the breeding strategies used are designed to obtain animals that are nullizygous for endogenous Ig light chain and/or endogenous Ig heavy chain.

[0155] Transgenic animals comprising regulatable genomic meganuclease expression constructs

⁵⁰ **[0156]** In one aspect, the invention provides transgenic animals comprising at least one regulatable genomic meganuclease expression construct.

[0157] The transgenic animals are selected from small laboratory animals, particularly birds (chicken, turkey, quail, duck, pheasant or goose and the like), rodents (e.g., rats, hamsters and guinea pigs), and weasels (e.g., ferrets).

[0158] In a preferred embodiment, the regulatable genomic meganuclease expression construct comprises an inducible expression control region operably linked to a meganuclease-encoding nucleic acid. The inducible expression control region is inducibly functional in a germ cell of the particular transgenic animal, and the encoded meganuclease is selective for a meganuclease target sequence situated in or proximal to an endogenous immunoglobulin locus of the subject animal. [0159] A regulatable meganuclease expression construct provides for minimization of cytotoxic effects associated

with expression of a particular meganuclease through controlled expression via inducible promoters, e.g., heat-inducible promoters, radiation-inducible promoters, tetracycline operon, hormone inducible promoters, and promoters inducible by dimerization of transactivators, and the like.

- [0160] In a preferred embodiment, a transgenic animal of the invention comprises two regulatable genomic meganu-
- ⁵ clease expression constructs, comprising two distinct nucleic acids encoding two distinct meganucleases that recognize two distinct target sequences. The two meganucleases in combination function to delete a genomic DNA segment of an endogenous lg locus and thereby inactivate the same.

[0161] Transgenic animals comprising at least one regulatable genomic meganuclease expression construct may be made by means well known in the art. For example, a transgenic vector containing an inducible expression control region operably linked to a meganuclease-encoding nucleic acid may be introduced into a recipient cell or cells and then integrated into the genome of the recipient cell or cells by random integration or by targeted integration.

10

50

- **[0162]** For random integration, such a transgenic vector can be introduced into a recipient cell by standard transgenic technology. For example, a transgenic vector can be directly injected into the pronucleus of a fertilized oocyte. A transgenic vector can also be introduced by co-incubation of sperm with the transgenic vector before fertilization of the oocyte.
- ¹⁵ Transgenic animals can be developed from fertilized oocytes. Another way to introduce a transgenic vector is by transfecting embryonic stem cells or other pluripotent cells (for example primordial germ cells) and subsequently injecting the genetically modified cells into developing embryos. Alternatively, a transgenic vector (naked or in combination with facilitating reagents) can be directly injected into a developing embryo. In another embodiment, the transgenic vector is introduced into the genome of a cell and an animal is derived from the transfected cell by nuclear transfer cloning.
- 20 [0163] For targeted integration, such a transgenic vector can be introduced into appropriate recipient cells such as embryonic stem cells or already differentiated somatic cells. Afterwards, cells in which the transgene has integrated into the animal genome at the targeted site by homologous recombination can be selected by standard methods. The selected cells may then be fused with enucleated nuclear transfer unit cells, e.g. oocytes or embryonic stem cells, cells which are totipotent and capable of forming a functional neonate. Fusion is performed in accordance with conventional tech-
- ²⁵ niques which are well established. See, for example, Cibelli et al., Science (1998) 280:1256 Zhou et al. Science (2003) 301: 1179. Enucleation of oocytes and nuclear transfer can also be performed by microsurgery using injection pipettes. (See, for example, Wakayama et al., Nature (1998) 394:369.) The resulting cells are then cultivated in an appropriate medium, and transferred into synchronized recipients for generating transgenic animals. Alternatively, the selected genetically modified cells can be injected into developing embryos.
- ³⁰ **[0164]** In one embodiment, a meganuclease is used to increase the frequency of homologous recombination at a target site through double-strand DNA cleavage.

[0165] Transgenic animals comprising artificial Ig loci and capable of producing antibodies having human idiotypes

[0166] In one aspect, the invention provides transgenic animals capable of producing immunoglobulins having human idiotypes, as well as methods of making the same.

³⁵ **[0167]** The transgenic animals used are selected from particularly birds (chicken, turkey, qail, duck, pheasant or goose and the like), rodents (e.g., rats, hamsters and guinea pigs), and weasels (e.g., ferrets).

[0168] The transgenic animals used for humanized antibody production in the invention carry germline mutations in endogenous Ig loci that have been effected by the activity of one or more meganucelases. In a preferred embodiment, the transgenic animals are nullizygous for endogenous Ig heavy chain and/or endogenous Ig light chain. Further, these

- 40 animals carry at least one artificial Ig locus that is functional and capable of producing a repertoire of immunoglobulin molecules in the transgenic animal. The artificial Ig loci used in the invention include at least one human V gene segment. [0169] In a preferred embodiment, the transgenic animals carry at least one artificial Ig heavy chain locus and at least one artificial Ig light chain locus that are each functional and capable of producing a repertoire of immunoglobulin molecules in the transgenic animal, which repertoire of immunoglobulin molecules includes antibodies having a human
- ⁴⁵ idiotype. In one embodiment, artificial loci including at least one non-human C gene are used, and animals capable of producing chimeric antibodies having a human idiotype and non-human constant region are provided. In one embodiment, artificial loci including at least one human C gene are used, and animals capable of producing antibodies having a human idiotype and human constant region are provided.

[0170] In another preferred embodiment, the transgenic animals carry at least one artificial lg heavy chain locus, and lack a functional lg light chain locus. Such animals find use in the production of heavy chain-only antibodies.

[0171] Production of such transgenic animals involves the integration of one or more artificial heavy chain Ig loci and one or more artificial light chain Ig loci into the genome of a transgenic animal having at least one endogenous Ig locus that has been or will be inactivated by the action of one or more meganucleases. Preferably, the transgenic animals are nullizygous for endogenous Ig heavy chain and/or endogenous Ig light chain and, accordingly, incapable of producing

⁵⁵ endogenous immunoglobulins. Regardless of the chromosomal location, an artificial Ig locus of the present invention has the capacity to undergo gene rearrangement and thereby produce a diversified repertoire of immunoglobulin molecules. An Ig locus having the capacity to undergo gene rearrangement is also referred to herein as a "functional" Ig locus, and the antibodies with a diversity generated by a functional Ig locus are also referred to herein as "functional" antibodies or a "functional" repertoire of antibodies.

10

[0172] The artificial loci used to generate such transgenic animals each include multiple immunoglobulin gene segments, which include at least one V region gene segment, one or more J gene segments, one or more D gene segments in the case of a heavy chain locus, and one or more constant region genes. In the present invention, at least one of the

⁵ V gene segments encodes a germline or hypermutated human V-region amino acid sequence. Accordingly, such transgenic animals have the capacity to produce a diversified repertoire of immunoglobulin molecules, which include antibodies having a human idiotype.

[0173] In one embodiment, the artificial loci used comprise at least one non-human C region gene segment. Accordingly, such transgenic animals have the capacity to produce a diversified repertoire of immunoglobulin molecules, which include chimeric antibodies having a human idiotype.

- **[0174]** In one embodiment, the artificial loci used comprise at least one human C region gene segment. Accordingly, such transgenic animals have the capacity to produce a diversified repertoire of immunoglobulin molecules, which include antibodies having a human idiotype and a human constant region.
- [0175] In one embodiment, the artificial loci used comprise at least one artificial constant region gene. For example, an exemplary artificial C constant region gene is a constant region gene encoding a human IgG CH1 domain and rat IgG CH2 and CH3 domain. Accordingly, such transgenic animals have the capacity to produce a diversified repertoire of immunoglobulin molecules, which include antibodies having a human idiotype and an artificial constant region comprising both human and non-human components.

[0176] The transgenic vector containing an artificial Ig locus is introduced into the recipient cell or cells and then integrated into the genome of the recipient cell or cells by random integration or by targeted integration.

- ²⁰ integrated into the genome of the recipient cell or cells by random integration or by targeted integration. [0177] For random integration, a transgenic vector containing an artificial Ig locus can be introduced into a recipient cell by standard transgenic technology. For example, a transgenic vector can be directly injected into the pronucleus of a fertilized oocyte. A transgenic vector can also be introduced by co-incubation of sperm with the transgenic vector before fertilization of the oocyte. Transgenic animals can be developed from fertilized oocytes. Another way to introduce
- ²⁵ a transgenic vector is by transfecting embryonic stem cells or other pluripotent cells (for example primordial germ cells) and subsequently injecting the genetically modified cells into developing embryos. Alternatively, a transgenic vector (naked or in combination with facilitating reagents) can be directly injected into a developing embryo. Ultimately, chimeric transgenic animals are produced from the embryos which contain the artificial Ig transgene integrated in the genome of at least some somatic cells of the transgenic animal. In another embodiment, the transgenic vector is introduced into
- 30 the genome of a cell and an animal is derived from the transfected cell by nuclear transfer cloning. [0178] In a preferred embodiment, a transgene containing an artificial Ig locus is randomly integrated into the genome of recipient cells (such as fertilized oocyte or developing embryos). The recipient cells are derived from an animal having at least one endogenous Ig locus that has been inactivated by the action of one or more meganucleases. Alternatively, transgenic animals carrying artificial immunoglobulin loci, can be crossed with transgenic animals having at least one
- ³⁵ endogenous lg locus that has been inactivated by the action of one or more meganucleases. Regardless of the particular method used, in a preferred embodiment, offspring that are nullizygous for endogenous lg heavy chain and/or lg light chain and, accordingly, incapable of producing endogenous immunoglobulins and capable of producing transgenic immunoglobulins are obtained.
- [0179] For targeted integration, a transgenic vector can be introduced into appropriate recipient cells such as embryonic stem cells, other pluripotent cells or already differentiated somatic cells. Afterwards, cells in which the transgene has integrated into the animal genome and has replaced the corresponding endogenous lg locus by homologous recombination can be selected by standard methods. The selected cells may then be fused with enucleated nuclear transfer unit cells, e.g. oocytes or embryonic stem cells, cells which are totipotent and capable of forming a functional neonate. Fusion is performed in accordance with conventional techniques which are well established. See, for example, Cibelli
- et al., Science (1998) 280:1256; Zhou et al. Science (2003) 301: 1179. Enucleation of oocytes and nuclear transfer can also be performed by microsurgery using injection pipettes. (See, for example, Wakayama et al., Nature (1998) 394: 369.) The resulting cells are then cultivated in an appropriate medium, and transferred into synchronized recipients for generating transgenic animals. Alternatively, the selected genetically modified cells can be injected into developing embryos which are subsequently developed into chimeric animals.
- ⁵⁰ **[0180]** In one embodiment, a meganuclease is used to increase the frequency of homologous recombination at a target site through double-strand DNA cleavage. For integration into endogenous immunoglobulin loci a site specific meganuclease may be used. In one embodiment, a meganuclease targeting an endogenous Ig locus is used to increase the frequency of homologous recombination and replacement of an endogenous Ig locus, or parts thereof with an artificial Ig locus, or parts thereof.
- ⁵⁵ **[0181]** In one embodiment, the transgenic animal lacks a functional lg light chain locus and comprises an artificial lg heavy chain locus.
 - [0182] Artificial Ig Loci
 - [0183] The present invention is further directed to artificial Ig loci and their use in making transgenic animals capable

of producing immunoglobulins having a human idiotype.

[0184] Each artificial Ig locus comprises multiple immunoglobulin gene segments, which include at least one V region gene segment, one or more J gene segments, one or more D gene segments in the case of a heavy chain locus, and one or more constant region genes. In the present invention, at least one of the V gene segments encodes a germline

- ⁵ or hypermutated human V-region amino acid sequence. Accordingly, such transgenic animals have the capacity to produce a diversified repertoire of immunoglobulin molecules, which include antibodies having a human idiotype. In heavy chain loci human or non-human-derived D-gene segments may be included in the artificial Ig loci. The gene segments in such loci are juxtaposed with respect to each other in an unrearranged configuration (or "the germline configuration"), or in a partially or fully rearranged configuration. The artificial Ig loci have the capacity to undergo gene
- 10 rearrangement (if the gene segments are not fully rearranged) in the subject animal thereby producing a diversified repertoire of immunoglobulins having human idiotypes.

[0185] Regulatory elements like promoters, enhancers, switch regions, recombination signals, and the like may be of human or non-human origin. What is required is that the elements be operable in the animal species concerned, in order to render the artificial loci functional.

- ¹⁵ **[0186]** In one aspect, the invention provides transgenic constructs containing an artificial heavy chain locus capable of undergoing gene rearrangement in the host animal thereby producing a diversified repertoire of heavy chains having human idiotypes. An artificial heavy chain locus of the transgene contains a V-region with at least one human V gene segment. Preferably, the V-region includes at least about 5-100 human heavy chain V (or "VH") gene segments. As described above, a human VH segment encompasses naturally occurring sequences of a human VH gene segment,
- 20 degenerate forms of naturally occurring sequences of a human VH gene segment, as well as synthetic sequences that encode a polypeptide sequence substantially (*i.e.*, at least about 85%-95%) identical to a human heavy chain V domain polypeptide.

[0187] In a preferred embodiment, the artificial heavy chain locus contains at least one or several rat constant region genes, e.g., $C\delta$, $C\mu$ and $C\gamma$ (including any of the $C\gamma$ subclasses).

- ²⁵ **[0188]** In another preferred embodiment, the artificial heavy chain locus contains artificial constant region genes. In a preferred embodiment, such artificial constant region genes encode a human CH1 domain and rat CH2 CH3 domains, or a human CH1 and rat CH2, CH3 and CH4 domains. A hybrid heavy chain with a human CH1 domain pairs effectively with a fully human light chain.
- [0189] In another preferred embodiment, the artificial heavy chain locus contains artificial constant region genes lacking 30 CH1 domains In a preferred embodiment, such artificial constant region genes encode truncated IgM and/or IgG lacking the CH1 domain but comprising CH2, and CH3, or CH1, CH2, CH3 and CH4 domains. Heavy chains lacking CH1 domains cannot pair effectively with Ig light chains and form heavy chain only antibodies.
- **[0190]** In another aspect, the invention provides transgenic constructs containing an artificial light chain locus capable of undergoing gene rearrangement in the host animal thereby producing a diversified repertoire of light chains having
- ³⁵ human idiotypes. An artificial light chain locus of the transgene contains a V-region with at least one human V gene segment, e.g., a V-region having at least one human VL gene and/or at least one rearranged human VJ segment. Preferably, the V-region includes at least about 5-100 human light chain V (or "VL") gene segments. Consistently, a human VL segment encompasses naturally occurring sequences of a human VL gene segment, degenerate forms of naturally occurring sequences of a human VL gene segment, as well as synthetic sequences that encode a polypeptide
- sequence substantially (i.e., at least about 85%-95%) identical to a human light chain V domain polypeptide. In one embodiment, the artificial light chain Ig locus has a C-region having at least one rat C gene (e.g., rat Cλ or Cκ).
 [0191] Another aspect of the present invention is directed to methods of making a transgenic vector containing an artificial Ig locus. Such methods involve isolating Ig loci or fragments thereof, and combining the same, with one or several DNA fragments comprising sequences encoding human V region elements. The Ig gene segment(s) are inserted
- ⁴⁵ into the artificial Ig locus or a portion thereof by ligation or homologous recombination in such a way as to retain the capacity of the locus to undergo effective gene rearrangement in the subject animal.
 [0192] Preferably, a non-human Ig locus is isolated by screening a library of plasmids, cosmids, YACs or BACs, and the like, prepared from the genomic DNA of the same. YAC clones can carry DNA fragments of up to 2 megabases, thus an entire animal heavy chain locus or a large portion thereof can be isolated in one YAC clone, or reconstructed
- to be contained in one YAC clone. BAC clones are capable of carrying DNA fragments of smaller sizes (about 50-500 kb). However, multiple BAC clones containing overlapping fragments of an lg locus can be separately altered and subsequently injected together into an animal recipient cell, wherein the overlapping fragments recombine in the recipient animal cell to generate a continuous lg locus.
- **[0193]** Human Ig gene segments can be integrated into the Ig locus on a vector (e.g., a BAC clone) by a variety of methods, including ligation of DNA fragments, or insertion of DNA fragments by homologous recombination. Integration of the human Ig gene segments is done in such a way that the human Ig gene segment is operably linked to the host animal sequence in the transgene to produce a functional humanized Ig locus, *i.e.*, an Ig locus capable of gene rearrangement which lead to the production of a diversified repertoire of antibodies with human idiotypes. Homologous

recombination can be performed in bacteria, yeast and other cells with a high frequency of homologous recombination events. Engineered YACs and BACs can be readily isolated from the cells and used in making transgenic animals.

[0194] Immunoglobulins having a human idiotype

- [0195] Once a transgenic animal capable of producing immunoglobulins having a human idiotype is made, immu-
- ⁵ noglobulins and antibody preparations against an antigen can be readily obtained by immunizing the animal with the antigen. "Polyclonal antisera composition" as used herein includes affinity purified polyclonal antibody preparations. [0196] A variety of antigens can be used to immunize a transgenic animal. Such antigens include but are not limited to, microorganisms, e.g. viruses and unicellular organisms (such as bacteria and fungi), alive, attenuated or dead, fragments of the microorganisms, or antigenic molecules isolated from the microorganisms.
- ¹⁰ **[0197]** Preferred bacterial antigens for use in immunizing an animal include purified antigens from *Staphylococcus aureus* such as capsular polysaccharides type 5 and 8, recombinant versions of virulence factors such as alpha-toxin, adhesin binding proteins, collagen binding proteins, and fibronectin binding proteins. Preferred bacterial antigens also include an attenuated version of *S. aureus, Pseudomonas aeruginosa*, enterococcus, enterobacter, and *Klebsiella pneumoniae*, or culture supernatant from these bacteria cells. Other bacterial antigens which can be used in immunization
- ¹⁵ include purified lipopolysaccharide (LPS), capsular antigens, capsular polysaccharides and/or recombinant versions of the outer membrane proteins, fibronectin binding proteins, endotoxin, and exotoxin from Pseudomonas aeruginosa, enterococcus, enterobacter, and Klebsiella pneumoniae.

[0198] Preferred antigens for the generation of antibodies against fungi include attenuated version of fungi or outer membrane proteins thereof, which fungi include, but are not limited to, Candida albicans, Candida parapsilosis, Candida tropicalis, and Cryptococcus neoformans.

Preferred antigens for use in immunization in order to generate antibodies against viruses include the envelop proteins and attenuated versions of viruses which include, but are not limited to respiratory synctial virus (RSV) (particularly the F-Protein), Hepatitis C virus (HCV), Hepatits B virus (HBV), cytomegalovirus (CMV), EBV, and HSV.

- [0199] Antibodies specific for cancer can be generated by immunizing transgenic animals with isolated tumor cells or tumor cell lines as well as tumor-associated antigens which include, but are not limited to, Her-2-neu antigen (antibodies against which are useful for the treatment of breast cancer); CD20, CD22 and CD53 antigens (antibodies against which are useful for the treatment of B cell lymphomas), prostate specific membrane antigen (PMSA) (antibodies against which are useful for the treatment of prostate cancer), and 17-1 A molecule (antibodies against which are useful for the treatment of colon cancer).
- 30 [0200] The antigens can be administered to a transgenic animal in any convenient manner, with or without an adjuvant, and can be administered in accordance with a predetermined schedule.
 [0201] For making a monoclonal antibody, spleen cells are isolated from the immunized transgenic animal and used either in cell fusion with transformed cell lines for the production of hybridomas, or cDNAs encoding antibodies are cloned by standard molecular biology techniques and expressed in transfected cells. The procedures for making monoclonal
- ³⁵ antibodies are well established in the art. See, e.g., European Patent Application 0 583 980 A1 ("Method For Generating Monoclonal Antibodies From Rabbits"), U.S. Patent No. 4,977,081 ("Stable Rabbit-Mouse Hybridomas And Secretion Products Thereof), WO 97/16537 ("Stable Chicken B-cell Line And Method of Use Thereof), and EP 0491 057 B1 ("Hybridoma Which Produces Avian Specific Immunoglobulin G"). In vitro production of monoclonal antibodies from cloned cDNA molecules has been described by Andris-Widhopf et al., "Methods for the generation of chicken monoclonal
- 40 antibody fragments by phage display", J Immunol Methods 242:159 (2000), and by Burton, D. R., "Phage display", Immunotechnology 1:87 (1995).
 102021 Once objective menoclonal antibodies with human idiatures have been generated, such chimeria antibodies.

[0202] Once chimeric monoclonal antibodies with human idiotypes have been generated, such chimeric antibodies can be easily converted into fully human antibodies using standard molecular biology techniques. Fully human monoclonal antibodies are not immunogenic in humans and are appropriate for use in the therapeutic treatment of human subjects.

45

55

20

Antibodies of the invention include heavy chain-only antibodies

[0203] In one embodiment, transgenic animals which lack a functional lg light chain locus, and comprising an artificial heavy chain locus, are immunized with antigen to produce heavy chain-only antibodies that specifically bind to antigen.

⁵⁰ **[0204]** In one embodiment, the invention provides monoclonal antibody producing cells derived from such animals, as well as nucleic acids derived therefrom. Also provided are hybridomas derived therefrom. Also provided are fully human heavy chain-only antibodies, as well as encoding nucleic acids, derived therefrom.

[0205] Teachings on heavy chain-only antibodies are found in the art. For example, see PCT publications WO02085944, WO02085945, WO2006008548, and WO2007096779. See also US 5,840,526; US 5,874,541; US 6,005,079; US 6,765,087; US 5,800,988; EP 1589107; WO 9734103; and US 6,015,695.

Pharmaceutical Compositions

[0206] In a further embodiment of the present invention, purified monoclonal or polyclonal antibodies are admixed with an appropriate pharmaceutical carrier suitable for administration to patients, to provide pharmaceutical compositions.

- ⁵ [0207] Patients treated with the pharmaceutical compositions of the invention are preferably mammals, more preferably humans, though veterinary uses are also contemplated.
 [0208] Pharmaceutically acceptable carriers which can be employed in the present pharmaceutical compositions can be any and all solvents, dispersion media, isotonic agents and the like. Except insofar as any conventional media, agent, diluent or carrier is detrimental to the recipient or to the therapeutic effectiveness of the antibodies contained therein,
- ¹⁰ its use in the pharmaceutical compositions of the present invention is appropriate. [0209] The carrier can be liquid, semi-solid, e.g. pastes, or solid carriers. Examples of carriers include oils, water, saline solutions, alcohol, sugar, gel, lipids, liposomes, resins, porous matrices, binders, fillers, coatings, preservatives and the like, or combinations thereof.

15 Methods of Treatment

[0210] Also disclosed are methods for treating a disease in a vertebrate, preferably a mammal, preferably a primate, with human subjects being an especially preferred embodiment, by administering a purified antibody composition of the invention desirable for treating such disease.

- 20 [0211] The antibody compositions can be used to bind and neutralize or modulate an antigenic entity in human body tissues that causes or contributes to disease or that elicits undesired or abnormal immune responses. An "antigenic entity" is herein defined to encompass any soluble or cell surface bound molecules including proteins, as well as cells or infectious disease-causing organisms or agents that are at least capable of binding to an antibody and preferably are also capable of stimulating an immune response.
- ²⁵ **[0212]** Administration of an antibody composition against an infectious agent as a monotherapy or in combination with chemotherapy results in elimination of infectious particles. A single administration of antibodies decreases the number of infectious particles generally 10 to 100 fold, more commonly more than 1000-fold. Similarly, antibody therapy in patients with a malignant disease employed as a monotherapy or in combination with chemotherapy reduces the number of malignant cells generally 10 to 100 fold, or more than 1000-fold. Therapy may be repeated over an extended amount
- ³⁰ of time to assure the complete elimination of infectious particles, malignant cells, etc. In some instances, therapy with antibody preparations will be continued for extended periods of time in the absence of detectable amounts of infectious particles or undesirable cells.

[0213] Similarly, the use of antibody therapy for the modulation of immune responses may consist of single or multiple administrations of therapeutic antibodies. Therapy may be continued for extended periods of time in the absence of any disease symptoms.

[0214] The subject treatment may be employed in conjunction with chemotherapy at dosages sufficient to inhibit infectious disease or malignancies. In autoimmune disease patients or transplant recipients, antibody therapy may be employed in conjunction with immunosuppressive therapy at dosages sufficient to inhibit immune reactions.

40 Experimental

[0215] Directed Evolution of homing endonucleases specific for rat immunoglobulin sequences.

[0216] An analysis of rat IgM exon sequences resulted in the identification of several target cleavage sequences for engineered homing endonucleases. Using homing endonuclease I-Scel, two target sequences were identified, one within rat IgM exon II (CGTGGATCACAGGGGTCT) and the other within rat IgM exon II (CGTGGATCACAGGGGTCT) and the other within rat IgM exon III (CTGGGATAACAGGAAGGA). These sites share 61% (11 out of 18 bases) sequence identity with the natural recognition sequence of I-Scel (TAGGGATAACAGGGTAAT).

50

35

Table 1. Target sequences in rat IgM exons (the different nucleo	otides are
--	------------

underlined)
------------	---

5	Target	Sequence	Similarity	position
	Т3	CGTGGATCACAGGGGTCT	61%	Exon II
	T4	CTGGGATAACAGGAAGGA	61%	Exon III
10	Wild type	TAGGGATAACAGGGTAAT		

[0217] For the engineering of homing endonucleases specific for these target sequences we used a highly sensitive selection for the directed evolution of homing endonucleases that couples enzymatic DNA cleavage with the survival of host cells (described in detail by Chen and Zhao, Nucleic Acid Research 33(18):e154, 2005). An *in vitro* coevolution strategy was used to engineer I-Scel variants with target sequence specificity. As shown in Table 2, for target sequence T3, two new sequences, T3i1 and T3i2, were selected as intermediate sequences, while for target sequence T4, two new sequences, T4i1 and T4i2, were selected as intermediate sequences. The T3i1 and T4i1 sequences were cloned into the report plasmid to yield p11-LacY-T3i1 and p11-LacY-T4i1, respectively.

25

30

Table 2. Sequences in three steps (the different nucleotides are underlined)

Step1	T3i1	TAGGGATAACAGGG <u>GTC</u> T	T4i1	TAGGGATAACAGGG <u>AGGA</u>
Step2	T3i2	<u>CGT</u> GGATAACAGGG <u>GTC</u> T	T4i2	<u>CT</u> GGGATAACAGGA <u>AGGA</u>
Step3	Т3	<u>©GT</u> GGAT <u>C</u> ACAGGG <u>GTC</u> T	T4	<u>CI</u> GGGATAACAGG <u>AAGGA</u>

[0218] To obtain I-Scel mutants with T3i1 or T4i1 sequence specificity, molecular modeling was first carried out to identify the residues to be used to create a focused library via saturation mutagenesis. As shown in Figure 2, I-Scel binds to the 3' end of T3i1 or T4i1 through a relaxed loop that lies in the minor groove of DNA. Residues Gly13, Pro14, Asn15 and Lys20 are close to this 3' end and Asn15 binds directly to the last thymine at the 3' end of the wild type recognition sequence through hydrogen bonds. A library of mutants containing all the possible combinations of amino acid substitutions at these four select residues were constructed by saturation mutagenesis. To generate a large enough library, the ligation reaction and DNA transformation procedures were optimized through several trials. A library consisting of 2.9 10 ⁶ mutants was created.

- **[0219]** The library was screened for I-Scel mutants with increased activity towards the T3i1 sequence. Compared to round 0 (wild type I-Scel), the first round of screening yielded mutants with increased activity toward the T3i1 sequence since the cell survival rate was increased by 10-fold. Enrichment of the potentially positive mutants in round 2 and 3 showed further improvement in cell survival rate. Similarly, the library was screened for I-Scel mutants with increased
- ⁴⁵ activity towards the T4i1 sequence. Screening of mutants yielded mutants with increased activity toward the T4i1 sequence.

[0220] In parallel, a second library of I-Scel mutants targeting the 5' end of the recognition sequence was designed. The first library created using saturation mutagenesis was focused on those residues interacting with the 3' end of the four nucleotides of the I-Scel recognition sequence. Based on molecular modeling, Trp149, Asp150, Tyr151 and Asn152

- ⁵⁰ lie in the major groove formed by the 5' end nucleotides. Asn152 interacts directly with T(-7) though hydrogen bonding. Asp150 and Tyr152 interact T opposite to A(-6) indirectly though a water molecule. Trp149 and Tyr151 interact with the phosphate backbone. Thus these four residues are important to the sequence specificity of I-Scel and simultaneous saturation mutagenesis on these four residues was done to create a second I-Scel mutant library.
- [0221] Further coevolution of these enzymes results in the generation of novel meganucleases specific for target sequences in rat IgM exons II and III (CGTGGATCACAGGGGTCT and CTGGGATAACAGGAAGGA)
 - **[0222]** Engineering of I-Cre with defined sequence specificity

[0223] For the engineering of homing endonucleases specific for novel target sequences we used a highly sensitive selection for the directed evolution of homing endonucleases that couples enzymatic DNA cleavage with the survival of

host cells (described in detail by Chen and Zhao, Nucleic Acid Research 33(18):e154, 2005). In addition, a general strategy for engineering I-Crel mutant with defined sequence specificity was designed. I-Crel recognizes a target sequence in a pseudo palindromic manner. Palindromic bases are directly recognized by I-Crel and may be difficult to be altered (J. Mol. Biol., 280, 345-353) (Fig. 4).

- 5 [0224] This property hinders the direct engineering of I-Crel derivatives that recognize a non-palindromic sequence. To overcome this problem, the target sequence was divided into left-half (upstream-half) and right-half (downstreamhalf). I-Crel is optimized for the intermediate sequences of the left-half palindrome and the right-half palindrome, respectively (Figure 4). Then, the I-Crel mutants, optimized for intermediate sequences, are engineered to recognize the target sequence palindrome. Finally, I-Crel mutant respectively optimized for left-half and that for right-half will be co-expressed
- 10 to cleave the target sequence. In addition, fusion of the left-half optimized mutant with the right-half optimized mutant by a polypeptide linker is examined.

[0225] A target sequence within exon IV (CAACTGATCCTGAGGGAGTCGG) that shares 59% sequence identity with the natural recognition sequence of homing endonuclease I-Crel was identified. Subsequently, based on the identity of palindromic bases within the original ICrel target sequence, two sequences, T5 and T6, were selected as target sequences

15 for I-Crel engineering.

[0226] I-Crel recognition sequence and 2 target sequences:

	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	1	2	3	4	5	6	7	8	9	10	11		
First half								Second half																
		A	N.P.	9572 2019				. 8	ر. د		_			Ű.,	C .				2553	\$¢∕¢C)		Hor	nology
Original	C	A	A	A	A	с	Ġ	ं	¢	G	т	G	А	Ğ	₹ A	C_	A	G	T	ÌΤ.	. T	Ĝ	total	palindromi
T5	A	A	A	A	A	Т	ŠG	T	C .	С	т	Т	G	Å	A	G	G	т	T	С	A	G	50.0%	64.3%
Т6	с	A	A	C	Ť	G	A	Υ τ	C	с	т	G	А	G	G	Ġ	A	G	T	ЭC	G	G	59.1%	57.1%

20

Palindromic bases are highlighted. Conserved bases are written in bold face. 25

[0227] The two target sequences, T5 and T6, were cloned into reporter plasmids. The I-Crel gene was cloned into the pTrc plasmid and sequenced to confirm that no mutations were introduced during PCR amplification. The I-Crel selection system is evaluated for cell survival rates.

30 [0228] In addition, molecular modeling was performed and protein residues that contact directly the DNA substrate were identified In addition, we designed the intermediate sequences for in vitro co-evolution experiments.

Target residues for saturation mutagenesis										
	Target residue									
YN-TS5-L	Q26 and S32	YN-TS6-L	Q26, K28 and R68							
YN-TS5-Ri1	R68, R70 and D75	YN-TS6-Ri1	Q44 and R68							
YN-TS5-Ri2	Q26 and K28	YN-TS6-Ri2	N30, Y33 and Q38							
YN-TS5-Ri3	N30, Y33 and Q38									

40

35

[0229] Subsequently, libraries of ICrel mutants are generated and screened for ICrel derivatives with novel target sequences. Further coevolution of these enzymes results in the generation of novel meganucleases specific for a target sequence within exon IV of rat IgM (CAACTGATCCTGAGGGAGTCGG).

[0230] Engineering of zinc-finger nucleases 45

[0231] Zinc-finger proteins (ZFP) were designed against sequences encoding rat IgM (exons 1-4) and assembled as described (Zhang, L. et al. Synthetic zing finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J. Biol. Chem 275:33850-33860, 2000, and Liu, P.Q. et al. Regulation of an endogenous locus against a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular

endothelial growth factor. J Biol. Chem. 2765:11323-11334, 2001), to yield the following ZFP moieties 50

5	Linker 4-5	TGEKP	TGEKP	P TGSQKP	TGSQKP	TGSQKP	TGEKP	TGEKP	TGEKP
10	Linker 2-3	TGGERP	TGGQRP	TGGGGGSQRP	TGGQRP	TGEKP	TGGQRP	TGEKP	TGEKP
15	Finger 6				TSGSLTR	QSGNLAR			
20	Finger 5	QNAHRKT	TSSNRKT	RSDVLSE	DRSALSR	TSGHLSR	DRSDLSR	DNSTRIK	RSDDLTR
25	Finger 4	RSDNLSE	RSDSLSA	QSGSLTR	HNATRIN	ERGTLAR	RSDALSR	RSDTLSV	DRSDLSR
30	Finger 3	RSDHLSR	RSDALAR	TSGSLSR	RSDNLST	HSNARKN	TSGHLSR	RSDALAR	RSDALAR
35	Finger 2	TSSDLSR	DRSTRTK	RSDNLRE	TSGHLSR	RSDHLST	RSDALTQ	QSGDLTR	DRANLSR
40	Finger 1	NKVGLIE	RSDALST	RSANLAR	DRSALSR	RSDALAR	QSSDLSR	RSAHLSR	RSANLSV
45 50	Recognition sequence	AGACAGGGGGGCTCTC	AATTTGGTGGCCATG	GTTCTGGTAGTT	GAAGTCATGCAGGGTGTC	GGTGCCATTGGGGTG	GCTGTGGGTGTGGCT	ACCATGTGTGGCAGGG	GAGGACCGTGGACAAG
55	SBS	17063	17065	17067	17068 G	17089	17090	17119 /	17120 0

[0232] DNA encoding ZFPs were cloned into an expression vector. Rat C6 cells were obtained from the American Type Culture Collection and grown as recommended in F-12 medium (invitrogen) supplemented with 5% qualified fetal calf serum (FCS, Hyclone), 15% horse serum (Invitrogen) and 5mM glutamine. Cells were disassociated from plasticware using TrypLE Select protease (Invitrogen). For transfection, 200,000 C6 cells were mixed with 400ng plamid DNA and

- ⁵ 20µL Amaxa Solution SF. Cells were transfected in an Amaxa Nucleofector II Shuttle using program 96 FF-137 and recovered into 0.1 L warm, supplemented, F-12 medium. Three and nine days post transfection cells were harvested and chromosomal DNA was prepared using a Quick Extract Soultion 1.0 (Epicentre). The appropriate region of the IgM locus was PCR amplified using Accuprime High-fidelity DNA polymerase (Invitrogen). PCR reactions were heated to 94°, then gradually cooled to room temperature. Approximately 200ng of the annealed DNA was mixed with 0.33µL
- CEL-I enzyme (Transgenomic) and incubated for 20 minutes at 42°. Reaction products were analyzed by polyacrylamide gel electrophoresis in 1X Tris-borate-EDTA buffer. A typical example demonstrating cleavage activity is shown in Figure 6.
 [0233] Generation of rats with inactivated endogenous heavy chain locus using expression plasmids encoding a meganuclease
- [0234] A cDNA sequence encoding a meganuclease specific for a rat Cμ exon is cloned into an expression vector where expression is controlled by the tetracycline operator sequence. Plasmid DNA is linearized by restriction enzyme digestion and purified. Rat oocytes are fertilized with sperm form rats with a transgene encoding a tetracycline-responsive reverse transactivator. Purified plasmid DNA is injected into pronuclei of such fertilized rat oocytes. Subsequently, rat embryos are transferred into foster mothers and brought to term. Newborns are analyzed for the presence of meganuclease-encoding transgene by PCR using DNA isolated from tissue samples. Male transgenic founder animals are
- ²⁰ housed for four months when they reach sexual maturity. Expression of meganuclease in transgenic animals is induced by daily administration of doxycycline for one to seven days. Subsequently, sperm is collected twice per week and analyzed by PCR. Male animals producing mutated sperm are used for breeding. Offspring with mutated rat C_µ are identified by PCR analysis of tissue samples.

[0235] Generation of rats with inactivated endogenous heavy chain locus by microinjection of fertilized oocytes with plasmid DNA encoding a specific meganuclease

[0236] A cDNA sequence encoding a meganuclease specific for a rat C_{μ} exon is cloned into an expression vector where expression is controlled by the CAG-promoter. Purified plasmid DNA is is injected into pronuclei of fertilized rat oocytes. Subsequently, rat embryos are transferred into foster mothers and brought to term. Newborns are analyzed for the presence mutated IgM exons by PCR and direct sequencing. Alternatively, animals containing cells with mutated IgM exons are identified by incubation of heated and cooled PCR products with CEL-I enzyme and subsequent gel electrophoresis.

[0237] The present application further includes the subject matter of the following numbered clauses:

- 1. A method for producing a viable germ cell having at least one inactivated endogenous lg locus, comprising expressing at least one meganuclease in a germ cell, fertilized oocyte or embryo, to generate a viable germ cell having at least one inactivated endogenous lg locus wherein said meganuclease recognizes a meganuclease target sequence present in or proximal to said endogenous lg locus.
- A method for producing a transgenic animal comprising at least one germline inactivated endogenous lg locus,
 comprising deriving a transgenic animal from a viable germ cell having at least one inactivated endogenous lg locus produced according to the method of clause 1, or a germ cell descendant thereof, wherein said transgenic animal is selected from the group consisting of birds, rodents, and weasels.
- 3. The method according to clause 2, wherein said viable germ cell having at least one inactivated endogenous lg locus further comprises an artificial Ig locus, whereby said transgenic animal comprises an artificial Ig locus.

4. The method according to clause 2, further comprising introducing an artificial lg locus into said viable germ cell having at least one inactivated endogenous lg locus, or a germ cell descendant thereof or a fertilized oocyte or embryo derived therefrom, whereby said transgenic animal comprises an artificial lg locus.

50

30

5. The method according to clause 2, wherein said deriving a transgenic animal from a viable germ cell having at least one inactivated endogenous Ig locus comprises combining said viable germ cell, or a germ cell descendant thereof, with a gamete comprising an artificial Ig locus, whereby said transgenic animal comprises an artificial Ig locus.

6. The method according to any one of clauses 3-5, wherein said artificial Ig locus comprises (i) a V-region having at least one human V gene segment encoding a germline or hypermutated human V-region amino acid sequence;
(ii) one or more J gene segments; and (iii) one or more constant region gene segments, wherein said artificial Ig locus is functional and capable of undergoing gene rearrangement and producing a repertoire of artificial immu-

noglobulins in a transgenic animal derived from said germ cell.

- 7. The method according clause 5, wherein said gamete has at least one inactivated endogenous Ig locus.
- ⁵ 8. The method according to clause 1, wherein said meganuclease target sequence is present in or proximal to a J gene segment within said at least one endogenous Ig locus.

9. The method according to clause 1, wherein said meganuclease target sequence is present in or proximal to an immunoglobulin constant region gene.

10

10. The method according to clause 1, further comprising expressing a second meganuclease in said germ cell, fertilized oocyte or embryo, wherein said second meganuclease recognizes a second meganuclease target sequence present in or proximal to said endogenous lg locus.

- 15 11. The method according to clause 1, wherein said germ cell, fertilized oocyte or embryo comprises a genomic meganuclease expression construct comprising an inducible expression control region operably linked to a nucleic acid encoding said meganuclease, and wherein said meganuclease is expressed in said germ cell, fertilized oocyte or embryo by inducing expression of said genomic meganuclease expression construct.
- 20 12. The method according to clause 11, comprising repeating the step of inducing expression of said genomic meganuclease expression construct.
- 13. The method according to clause 11, wherein said germ cell, fertilized oocyte or embryo comprises a second genomic meganuclease expression construct comprising a second inducible expression control region operably linked to a second meganuclease-encoding nucleic acid, wherein said second encoded meganuclease recognizes a second meganuclease target sequence present in said endogenous Ig locus, wherein said germ cell, fertilized oocyte or embryo.
- ³⁰ 14. A viable germ cell having at least one inactivated endogenous Ig locus produced by the method according to clause 1.

15. A transgenic animal produced by the method according to clause 2.

³⁵ 16. A transgenic animal produced by the method according to any one of clause 3-5.

17. The transgenic animal according to clause 15 or 16, wherein said transgenic animal lacks a functional endogenous Ig light chain locus.

40 18. The transgenic animal according to clauses 15 or 16, wherein said transgenic animal lacks a functional endogenous Ig heavy chain locus.

19. The transgenic animal of clause 16, wherein said transgenic animal is capable of producing immunoglobulins having a human idiotype.

45

20. The transgenic animal of clause 16, wherein said transgenic animal lacks a functional Ig light chain locus and comprises an artificial Ig heavy chain locus, and wherein said transgenic animal is capable of producing heavy chain only antibodies.

- ⁵⁰ 21. The transgenic animal of clause 16, wherein said transgenic animal comprises at least one Ig heavy chain locus with at least one C-region gene lacking sequences encoding a functional CH1 domain, and lacking a functional Ig light chain locus.
- 22. A transgenic animal comprising a genomic meganuclease expression construct, wherein said construct comprises an inducible expression control region operably linked to a meganuclease-encoding nucleic acid, and wherein said encoded meganuclease recognizes a meganuclease target sequence present in or proximal to an endogenous lg locus of said transgenic animal, wherein said transgenic animal is selected from the group consisting of birds, rodents, and weasels.

23. The transgenic animal of clause 22, wherein the genome of said transgenic animal further comprises at least one artificial lg locus.

24. A method for producing antibodies, comprising immunizing the transgenic animal according to clause 16 with an immunogen.

25. A polyclonal antisera composition produced by the method of clause 24.

26. A method for producing a monoclonal antibody, comprising (i) immunizing the transgenic animal according to clause 16 with an immunogen, (ii) isolating a monoclonal antibody producing cell from said transgenic animal wherein said monoclonal antibody producing cell produces a monoclonal antibody that specifically binds to said immunogen; and (iii) using said monoclonal antibody producing cell to produce said monoclonal antibody that specifically binds to said immunogen, or using said monoclonal antibody producing cell to produce a hybridoma cell that produces said monoclonal antibody and using said hybridoma cell to produce said monoclonal antibody.

15

20

5

27. A method for producing a monoclonal antibody, comprising (i) immunizing the transgenic animal according to clause 16 with an immunogen, (ii) isolating a monoclonal antibody producing cell from said transgenic animal wherein said monoclonal antibody producing cell produces a monoclonal antibody that specifically binds to said immunogen; (iii) isolating from said monoclonal antibody producing cell a monoclonal antibody nucleic acid which encodes said monoclonal antibody that specifically binds to said immunogen; and (iv) using said monoclonal antibody nucleic acid to produce said monoclonal antibody that specifically binds to said immunogen.

28. The method according to clause 26 or 27, wherein said monoclonal antibody has a human idiotype.

25 29. A method for producing a fully human monoclonal antibody, comprising (i) immunizing the transgenic animal according to clause 16 with an immunogen, (ii) isolating a monoclonal antibody producing cell from said transgenic animal wherein said monoclonal antibody producing cell produces a monoclonal antibody that specifically binds to said immunogen; (iii) isolating from said monoclonal antibody producing cell a monoclonal antibody nucleic acid which encodes said monoclonal antibody that specifically binds to said immunogen; (iv) modifying said monoclonal antibody that specifically binds to said immunogen; (iv) modifying said monoclonal antibody that specifically binds to said immunogen; (iv) modifying said monoclonal antibody that specifically binds to said immunogen; (iv) modifying said monoclonal antibody is antibody nucleic acid to produce a recombinant nucleic acid encoding a fully human monoclonal antibody; and (v) using said recombinant nucleic acid encoding a fully human monoclonal antibody.

30. A monoclonal antibody produced by the method according to any one of clauses 26, 27, or 29.

35

31. A method for neutralizing an antigenic entity in a human body component, said method comprising contacting said body component with a polyclonal antisera composition according to clause 25, wherein said polyclonal antisera composition comprises immunoglobulin molecules that specifically bind and neutralize said antigenic entity.

40 32. A method for neutralizing an antigenic entity in a human body component, said method comprising contacting said body component with the monoclonal antibody according to clause 30, wherein said monoclonal antibody specifically binds to and neutralizes said antigenic entity.

33. A method for producing heavy chain-only antibodies, comprising immunizing a transgenic animal according to
 clause 20 or 21.

34. A heavy chain-only antibody produced by the method according to clause 33.

50 Claims

- **1.** A method of generating a rat, comprising:
- (A) injecting into a rat germ cell, rat fertilized oocyte or a rat embryo, a meganuclease specific for Ig gene
 fragments in heavy and/or light chain loci endogenous to the rat, wherein the meganuclease introduces double-strand_breaks into said heavy and/or light chain loci; or(B) injecting into a rat germ cell, rat fertilized oocyte or a rat embryo, an expression vector or nucleic acid encoding a meganuclease specific for Ig gene fragments in heavy and/or light chain loci endogenous to the rat, wherein the meganuclease specific for Ig gene fragments in heavy and/or light chain loci endogenous to the rat, wherein the meganuclease specific for lg gene fragments in heavy and/or light chain loci endogenous to the rat, wherein the meganuclease introduces double-strand breaks

into said heavy and/or light chain loci.

- 2. A rat which is nullizygous for endogenous Ig light chain loci and/or endogenous heavy chain loci.
- 3. The rat according to claim 2 comprising an artificial immunoglobulin (Ig) locus.
 - 4. The rat according to claim 3, wherein the artificial Ig locus is an Ig light chain locus and/or a Ig heavy chain locus.
- 5. The rat according to claim 3, wherein the artificial lg locus comprises an lg locus comprising fragments of human and rat lg loci including multiple immunoglobulin gene segments, optionally wherein: (i) at least one variable (V) gene segment is a human V gene segment; and/or ii) at least one diverse (D) gene segment is a human D gene segment.
- 6. The rat according to claim 5, wherein the human gene segment comprises: i) naturally occurring sequences of a human lg gene segment; ii) degenerate forms of naturally occurring sequences of a human lg gene segment; and/or iii) synthetic sequences encoding a polypeptide sequence that is 85%-95% identical to the polypeptide encoded by a naturally occurring sequence of a human lg gene segment.
 - 7. The rat according to any one of claims 3 to 6 that is capable of producing immunoglobulins with human idiotypes.
 - 8. A method for producing a monoclonal antibody, comprising: (i) immunizing the rat according to any of claims 3 to 7 with an immunogen; (ii) isolating a monoclonal antibody producing cell from the rat wherein the monoclonal antibody producing cell produces a monoclonal antibody that specifically binds to the immunogen; and (iii) using the monoclonal antibody producing cell to produce the monoclonal antibody that specifically binds to the immunogen, or using the monoclonal antibody producing cell to produce a hybridoma cell that produces the monoclonal antibody and using the hybridoma cell to produce the monoclonal antibody.
 - 9. A method for producing a monoclonal antibody comprising: (i) immunizing the rat according to any of claims 3 to 7 with an immunogen; (ii) isolating a monoclonal antibody producing cell from the rat wherein the monoclonal antibody producing cell produces a monoclonal antibody that specifically binds to the immunogen; (iii) isolating from the monoclonal antibody producing cell a monoclonal antibody nucleic acid which encodes the monoclonal antibody that specifically binds to the immunogen; and (iv) using the monoclonal antibody nucleic acid to produce the monoclonal antibody that specifically binds to the immunogen, wherein optionally the monoclonal antibody has a human idiotype.
- 35

40

45

30

5

20

- **10.** A method for producing a monoclonal antibody comprising: (i) immunizing the rat according to any of claims 3 to 7 with an immunogen; (ii) isolating a monoclonal antibody producing cell from the rat wherein the monoclonal antibody producing cell produces a monoclonal antibody that specifically binds to the immunogen; (iii) isolating from the monoclonal antibody producing cell a monoclonal antibody nucleic acid which encodes the monoclonal antibody that specifically binds to the immunogen; (iv) modifying the monoclonal antibody nucleic acid to produce a recombinant nucleic acid encoding a fully human monoclonal antibody; and (v) using the recombinant nucleic acid encoding a fully human monoclonal antibody.
- **11.** The method according to any one of claims 8 to 10, wherein the method further comprises the steps of: i) purifying the antibody; and ii) admixing the antibody with an appropriate pharmaceutical carrier suitable for administration to patients.
 - **12.** A cell obtainable by the method of claim 8.
- ⁵⁰ **13.** A transfected cell comprising a nucleic acid encoding the monoclonal antibody defined in claim 9.
 - **14.** The transfected cell comprising the monoclonal antibody nucleic acid which encodes the monoclonal antibody that specifically binds to the immunogen as defined in claim 10.
- 55 15. An isolated nucleic acid encoding the monoclonal antibody obtainable by the method of claim 9, wherein the artificial locus comprises at least one human J gene segment, wherein the monoclonal antibody is a chimeric immunoglobulin which comprises a portion of human immunoglobulin polypeptide sequence and a portion of rat immunoglobulin polypeptide sequence.

- **16.** A chimeric immunoglobulin comprising a polypeptide sequence encoded by the nucleic acid of claim 15, wherein the chimeric immunoglobulin comprises a portion of human immunoglobulin polypeptide sequence and a portion of rat immunoglobulin polypeptide sequence.
- ⁵ **17.** The immunoglobulin of claim 16, wherein the immunoglobulin has a constant (C) region which is selected from (i) a rat constant C region, or (ii) an artificial constant (C) region, wherein the artificial constant region is derived from human and rat constant regions, optionally wherein the artificial (C) region has a human IgG CH1 domain and a rat IgG CH2 and CH3 domain
- 10 **18.** A transfected cell comprising the nucleic acid of claim 15.

Patentansprüche

¹⁵ **1.** Verfahren zum Erzeugen einer Ratte, das Folgendes umfasst:

(A) Injizieren einer Meganuklease in eine Keimzelle einer Ratte, eine befruchtete Oozyte einer Ratte oder einen Rattenembryo, wobei die Meganuklease für Ig-Genfragmente in Loci der schweren und/oder der leichten Kette, die für die Ratte endogen sind, spezifisch ist, wobei die Meganuklease Doppelstrangbrüche in die Loci der schweren und/oder der leichten Kette einführt; oder (B) Injizieren eines Expressionsvektors oder einer Nukleinsäure in eine Keimzelle einer Ratte, eine befruchtete Oozyte einer Ratte oder einen Rattenembryo, wobei der Expressionsvektor oder die Nukleinsäure eine Meganuklease codiert, die für Ig-Genfragmente in Loci der schweren und/oder der leichten Kette, die für die Ratte endogen sind, spezifisch ist, wobei die Meganuklease Doppelstrangbrüche in die Loci der schweren und/oder der leichten Kette einführt.

25

35

40

45

50

- 2. Ratte, die für endogene Ig-Loci der leichten Kette und/oder endogene Ig-Loci der schweren Kette nullzygot ist.
- 3. Ratte nach Anspruch 2, die einen künstlichen Immunglobulin-Locus (Ig-Locus) umfasst.
- **4.** Ratte nach Anspruch 3, wobei der künstliche Ig-Locus ein Ig-Locus der leichten Kette und/oder ein Ig-Locus der schweren Kette ist.
 - Ratte nach Anspruch 3, wobei der künstliche Ig-Locus einen Ig-Locus umfasst, der Fragmente von humanem und Ratten-Ig-Loci umfasst, die mehrere Immunglobulin-Gensegmente enthalten, gegebenenfalls wobei: (i) mindestens ein variables (V) Gensegment ein humanes V-Gensegment ist und/oder (ii) mindestens ein Diversity-(D)-Gensegment ein humanes D-Gensegment ist.
 - 6. Ratte nach Anspruch 5, wobei das humane Gensegment Folgendes umfasst: i) natürlich vorkommende Sequenzen eines humanen Ig-Gensegments; ii) degenerierte Formen natürlich vorkommender Sequenzen eines humanen Ig-Gensegments und/oder iii) synthetische Sequenzen, die eine Polypeptidsequenz codieren, die zu 85 % 95 % mit dem Polypeptid identisch ist, das von einer natürlich vorkommenden Sequenz eines humanen Ig-Gensegments codiert wird.
 - 7. Ratte nach einem der Ansprüche 3 bis 6, die Immunglobuline mit humanen Idiotypen produzieren kann.
 - 8. Verfahren zum Produzieren eines monoklonalen Antikörpers, das Folgendes umfasst: (i) Immunisieren der Ratte nach einem der Ansprüche 3 bis 7 mit einem Immunogen; (ii) Isolieren einer monoklonale Antikörper produzierenden Zelle aus der Ratte, wobei die monoklonale Antikörper produzierende Zelle einen monoklonalen Antikörper produzierenden ziert, der spezifisch an das Immunogen bindet; und (iii) Verwenden der monoklonale Antikörper produzierenden Zelle zum Produzieren des monoklonalen Antikörpers, der spezifisch an das Immunogen bindet, oder Verwenden der monoklonale Antikörper produzierenden Antikörper produzierenden Zelle zum Produzieren des monoklonalen Antikörpers, der spezifisch an das Immunogen bindet, oder Verwenden der monoklonale Antikörper produzierenden Zelle zum Produzieren einer Hybridomzelle, die den monoklonalen Antikörpers.
- 9. Verfahren zum Produzieren eines monoklonalen Antikörpers, das Folgendes umfasst: (i) Immunisieren der Ratte nach einem der Ansprüche 3 bis 7 mit einem Immunogen; (ii) Isolieren einer monoklonale Antikörper produzierenden Zelle aus der Ratte, wobei die monoklonale Antikörper produzierende Zelle einen monoklonalen Antikörper produziert, der spezifisch an das Immunogen bindet; (iii) Isolieren einer Nukleinsäure eines monoklonalen Antikörper saus der monoklonale Antikörper produzierenden Zelle, wobei die Nukleinsäure den monoklonalen Antikörper codiert,

der spezifisch an das Immunogen bindet; und (iv) Verwenden der Nukleinsäure des monoklonalen Antikörpers zum Produzieren des monoklonalen Antikörpers, der spezifisch an das Immunogen bindet, wobei gegebenenfalls der monoklonale Antikörper einen humanen Idiotyp aufweist.

- 10. Verfahren zum Produzieren eines monoklonalen Antikörpers, das Folgendes umfasst: (i) Immunisieren der Ratte nach einem der Ansprüche 3 bis 7 mit einem Immunogen; (ii) Isolieren einer monoklonale Antikörper produzierenden Zelle aus der Ratte, wobei die monoklonale Antikörper produzierende Zelle einen monoklonalen Antikörper produzieren, der spezifisch an das Immunogen bindet; (iii) Isolieren einer Nukleinsäure eines monoklonalen Antikörper codiert, der spezifisch an das Immunogen bindet; (iv) Modifizieren der Nukleinsäure den monoklonalen Antikörpers, um einer rekombinante Nukleinsäure zu produzieren, die einen vollständig humanen monoklonalen Antikörper codiert; und (v) Verwenden der rekombinanten Nukleinsäure, die einen vollständig humanen monoklonalen Antikörper codiert; zum Produzieren des codierten vollständig humanen monoklonalen Antikörpers.
- 15 11. Verfahren nach einem der Ansprüche 8 bis 10, wobei das Verfahren weiterhin die folgenden Schritte umfasst: i) Aufreinigen des Antikörpers und ii) Mischen des Antikörpers mit einem adäquaten pharmazeutischen Trägerstoff, der zur Verabreichung an Patienten geeignet ist.
 - 12. Zelle, die durch das Verfahren nach Anspruch 8 erhalten werden kann.
 - 13. Transfizierte Zelle, die eine Nukleinsäure umfasst, die den in Anspruch 9 definierten monoklonalen Antikörper codiert.
 - 14. Transfizierte Zelle, die die Nukleinsäure des monoklonalen Antikörpers umfasst, die den monoklonalen Antikörper codiert, der spezifisch an das Immunogen bindet, wie in Anspruch 10 definiert.
- 25

20

- 15. Isolierte Nukleinsäure, die den monoklonalen Antikörper codiert, der durch das Verfahren nach Anspruch 9 erhalten werden kann, wobei der künstliche Locus mindestens ein humanes J-Gensegment umfasst, wobei der monoklonale Antikörper ein chimäres Immunglobulin ist, das einen Teil einer humanen Immunglobulin-Polypeptidsequenz und einen Teil einer Ratten-Immunglobulin-Polypeptidsequenz umfasst.
- 30
- 16. Chimäres Immunglobulin, das eine Polypeptidsequenz umfasst, die von der Nukleinsäure nach Anspruch 15 codiert wird, wobei das chimäre Immunglobulin einen Teil einer humanen Immunglobulin-Polypeptidsequenz und einen Teil einer Ratten-Immunglobulin-Polypeptidsequenz umfasst.
- 17. Immunglobulin nach Anspruch 16, wobei das Immunglobulin eine konstante (C) Region aufweist, die aus (i) einer konstanten C-Region einer Ratte oder (ii) einer künstlichen konstanten (C) Region ausgewählt ist, wobei die künstliche konstante Region von humanen konstanten Regionen und konstanten Regionen einer Ratte abgeleitet ist, gegebenenfalls wobei die künstliche (C) Region eine humane Ig-CH1-Domäne und eine Ratten-IgG-CH2-und -CH3-Domäne aufweist.

40

18. Transfizierte Zelle, die die Nukleinsäure nach Anspruch 15 umfasst.

Revendications

- 45
- 1. Procédé de génération d'un rat, comprenant :

50

(A) l'injection dans une cellule germinale de rat d'un ovocyte fertilisé de rat ou d'un embryon de rat, d'une méganucléase spécifique pour des fragments de gène d'Ig dans des locus de chaîne lourde et/ou légère endogènes au rat, dans lequel la méganucléase introduit des cassures à double brin dans lesdits locus de chaîne lourde et/ou légère ; ou (B) l'injection dans une cellule germinale de rat d'un ovocyte fertilisé de rat ou d'un embryon de rat, d'un vecteur d'expression ou acide nucléique codant pour une méganucléase spécifique pour des fragments de gène d'Ig dans des locus de chaîne lourde et/ou légère au rat, dans lequel la méganucléase introduit des cassures à double brin dans lequel la méganucléase introduit des cassures à double brin dans lesdits locus de chaîne lourde et/ou légère.

- 2. Rat qui est nullizygote pour des locus de chaîne légère d'Ig endogènes et/ou des locus de chaîne lourde endogènes.
- 3. Rat selon la revendication 2, comprenant un locus d'immunoglobuline (Ig) artificiel.

- 4. Rat selon la revendication 3, dans lequel le locus d'Ig artificiel est un locus de chaîne légère d'Ig et/ou un locus de chaîne lourde d'Ig.
- 5. Rat selon la revendication 3, dans lequel le locus d'Ig artificiel comprend un locus d'Ig comprenant des fragments de locus d'Ig humaine et de rat incluant de multiples segments de gène d'immunoglobuline, en option dans lequel :
 (i) au moins un segment de gène variable (V) est un segment de gène V humain ; et/ou ii) au moins un segment de gène divers (D) est un segment de gène D humain.
- 6. Rat selon la revendication 5, dans lequel le segment de gène humain comprend : i) des séquences se produisant naturellement d'un segment de gène d'Ig humaine ; ii) des formes dégénérées de séquences se produisant naturellement d'un segment de gène d'Ig humaine ; et/ou iii) des séquences synthétiques codant pour une séquence polypeptidique qui est identique à 85 % à 95 % au polypeptide encodé par une séquence se produisant naturellement d'un segment de gène d'Ig humaine.
- **7.** Rat selon l'une quelconque des revendications 3 à 6 qui est capable de produire des immunoglobulines avec des idiotypes humains.
- 8. Procédé de production d'un anticorps monoclonal comprenant : (i) l'immunisation du rat selon l'une quelconque des revendications 3 à 7 avec un immunogène ; (ii) l'isolement d'une cellule produisant des anticorps monoclonaux du rat, dans lequel la cellule produisant des anticorps monoclonaux produit un anticorps monoclonal qui se fixe spécifiquement à l'immunogène ; et (iii) l'utilisation de la cellule produisant des anticorps monoclonaux pour produire l'anticorps monoclonal qui se fixe spécifiquement à l'immunogène ; et (iii) l'utilisation de la cellule produisant des anticorps monoclonaux pour produire l'anticorps monoclonaux pour produire d'hybridome qui produit l'anticorps monoclonal et l'utilisation de la cellule d'hybridome pour produire l'anticorps monoclonal.
- Procédé de production d'un anticorps monoclonal comprenant : (i) l'immunisation du rat selon l'une quelconque des revendications 3 à 7 avec un immunogène ; (ii) l'isolement d'une cellule produisant des anticorps monoclonaux du rat, dans lequel la cellule produisant des anticorps monoclonaux produit un anticorps monoclonal qui se fixe spécifiquement à l'immunogène ; (iii) l'isolement de la cellule produisant des anticorps monoclonaux d'un acide nucléique d'anticorps monoclonal qui code pour l'anticorps monoclonal qui se fixe spécifiquement à l'immunogène ; et (iv) l'utilisation de l'acide nucléique d'anticorps monoclonal pour produire l'anticorps monoclonal qui se fixe spécifiquement à l'immunogène, dans lequel, en option, l'anticorps monoclonal a un idiotype humain.
- 10. Procédé de production d'un anticorps monoclonal comprenant : (i) l'immunisation du rat selon l'une quelconque des revendications 3 à 7 avec un immunogène ; (ii) l'isolement d'une cellule produisant des anticorps monoclonaux du rat, dans lequel la cellule produisant des anticorps monoclonaux produit un anticorps monoclonal qui se fixe spécifiquement à l'immunogène ; (iii) l'isolement de la cellule produisant des anticorps monoclonaux d'un acide nucléique d'anticorps monoclonal qui code pour l'anticorps monoclonal qui se fixe spécifiquement à l'immunogène ; (iv) la modification de l'acide nucléique d'anticorps monoclonal pour produire un acide nucléique recombiné codant pour un anticorps monoclonal entièrement humain ; et (v) l'utilisation de l'acide nucléique recombiné codant pour un anticorps monoclonal entièrement humain pour produire l'anticorps monoclonal entièrement humain pour produire l'anticorps monoclonal entièrement humain encodé.
 - **11.** Procédé selon l'une quelconque des revendications 8 à 10, dans lequel le procédé comprend en outre les étapes consistant à : i) purifier l'anticorps ; et ii) mélanger l'anticorps à un support pharmaceutique approprié convenant à l'administration à des patients.
 - 12. Cellule pouvant être obtenue par le procédé selon la revendication 8.
 - 13. Cellule transfectée comprenant un acide nucléique codant pour l'anticorps monoclonal défini à la revendication 9.
- 50

45

5

- **14.** Cellule transfectée comprenant l'acide nucléique d'anticorps monoclonal qui code pour l'anticorps monoclonal qui se fixe spécifiquement à l'immunogène tel que défini à la revendication 10.
- 15. Acide nucléique isolé codant pour l'anticorps monoclonal pouvant être obtenu par le procédé selon la revendication
 ⁵⁵ 9, dans lequel le locus artificiel comprend au moins un segment de gène J humain, dans lequel l'anticorps monoclonal
 est une immunoglobuline chimère qui comprend une portion de séquence polypeptidique d'immunoglobuline humaine et une portion de séquence polypeptidique d'immunoglobuline de rat.

- **16.** Immunoglobuline chimère comprenant une séquence polypeptidique encodée par l'acide nucléique selon la revendication 15, dans laquelle l'immunoglobuline chimère comprend une portion de séquence polypeptidique d'immunoglobuline humaine et une portion de séquence polypeptidique d'immunoglobuline de rat.
- 17. Immunoglobuline selon la revendication 16, dans laquelle l'immunoglobuline a une région constante (C) qui est sélectionnée parmi (i) une région C constante de rat, ou (ii) une région constante (C) artificielle, dans laquelle la région constante artificielle est dérivée de régions constantes humaines et de rat, en option dans laquelle la région (C) artificielle a un domaine CH1 d'IgG humaine et un domaine CH2 et CH3 d'IgG de rat.
- 10 **18.** Cellule transfectée comprenant l'acide nucléique selon la revendication 15.

15			
20			
25			
30			
35			
40			
45			
50			
55			

Ω VH.....NH

FIGURE 1

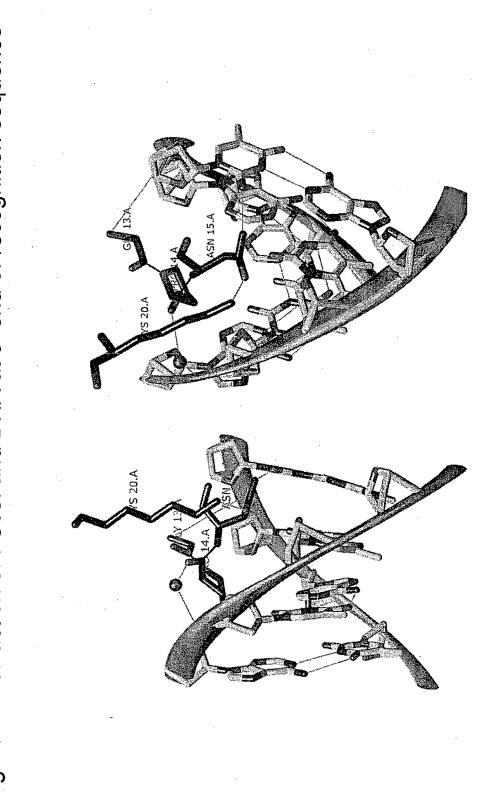
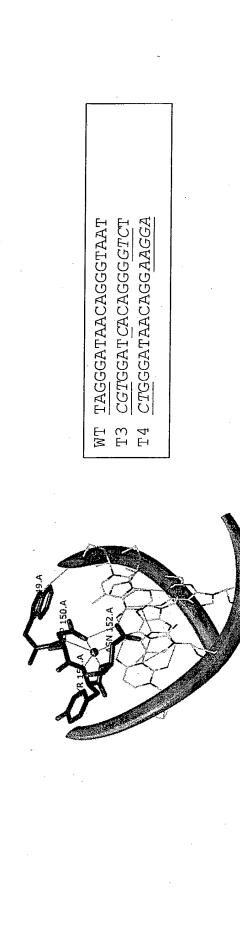
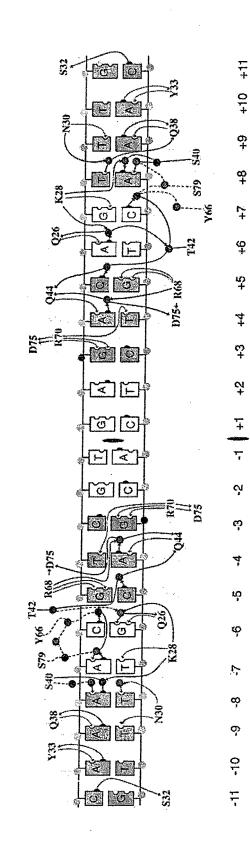
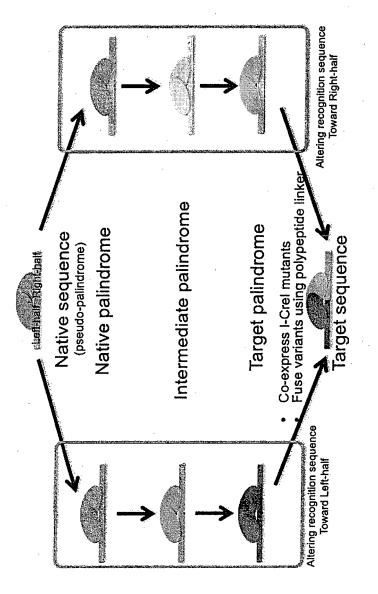


Figure 2. Interaction of I-Scel and DNA at 3' end of recognition sequence

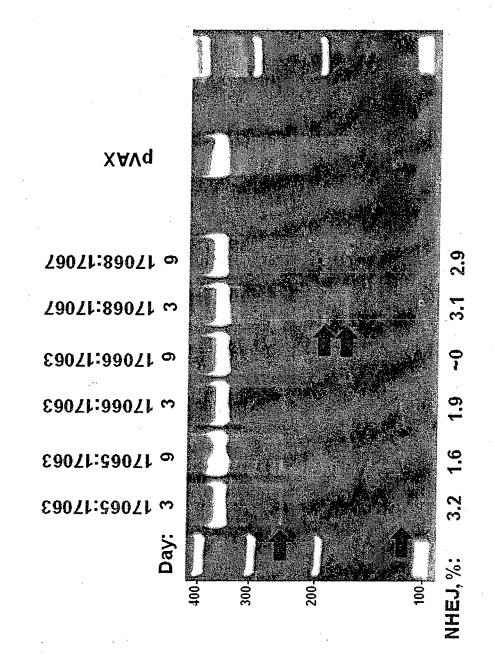

Figure 3. Interaction of the 5' end of the I-Scel recognition sequence with I-Scel.

Figure 4. Sequence recognition mechanism of I-Crel

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 20060206949 A [0129]
- US 20060153826 A [0129]
- US 20040002092 A [0129]
- US 20060078552 A [0129]
- US 20050064474 A [0129]
- EP 0583980 A1 [0201]
- US 4977081 A [0201]
- WO 9716537 A [0201]
- EP 0491057 B1 [0201]
- WO 02085944 A [0205]
- WO 02085945 A [0205]

Non-patent literature cited in the description

- MACPEHRSON et al. Nature Immunol, 2001, vol. 2 (7), 625-631 [0006]
- KITAMURA; RAJEWKY. Nature, 1992, vol. 356, 154-156 [0006]
- GORMAN et al. Reshaping a therapeutic CD4 antibody. *PNAS*, 1991, 88 [0008]
- Nucleic Acids Res., vol. 34, 4791-4800 [0119]
- ZOU et al. JEM, 2007, vol. 204, 3271-3283 [0123]
- PROTEUS; CARROLL. nature biotechnology, 2005, vol. 23 (8), 967-97 [0130]
- RYU et al. J. Aridrol., 2007, vol. 28, 353-360 [0142]
- ORWIG et al. *Biol. Report,* 2002, vol. 67, 874-879 [0142]
- VILABOA et al. Current Gene Therapy, 2006, vol. 6, 421-438 [0144]
- CIBELLI et al. Science, 1998, vol. 280, 1256 [0163]
 [0179]
- ZHOU et al. Science, 2003, vol. 301, 1179 [0163]
 [0179]

- WO 2006008548 A [0205]
- WO 2007096779 A [0205]
- US 5840526 A **[0205]**
- US 5874541 A [0205]
- US 6005079 A [0205]
- US 6765087 B [0205]
- US 5800988 A [0205]
- EP 1589107 A [0205]
- WO 9734103 A [0205]
- US 6015695 A [0205]
- WAKAYAMA et al. Nature, 1998, vol. 394, 369
 [0163] [0179]
- ANDRIS-WIDHOPF et al. Methods for the generation of chicken monoclonal antibody fragments by phage display. *J Immunol Methods*, 2000, vol. 242, 159 [0201]
- BURTON, D. R. Phage display. *Immunotechnology*, 1995, vol. 1, 87 [0201]
- CHEN; ZHAO. Nucleic Acid Research, 2005, vol. 33 (18), e154 [0217] [0223]
- J. Mol. Biol., vol. 280, 345-353 [0223]
- **ZHANG, L. et al.** Synthetic zing finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. *J. Biol. Chem,* 2000, vol. 275, 33850-33860 **[0231]**
- LIU, P.Q. et al. Regulation of an endogenous locus against a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor. J Biol. Chem., 2001, vol. 2765, 11323-11334 [0231]